本文整理匯總了Python中diffpy.srfit.fitbase.Profile類的典型用法代碼示例。如果您正苦於以下問題:Python Profile類的具體用法?Python Profile怎麽用?Python Profile使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
在下文中一共展示了Profile類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: makeProfile
def makeProfile(datafile):
"""Make an place data within a Profile."""
profile = Profile()
parser = PDFParser()
parser.parseFile(datafile)
profile.loadParsedData(parser)
profile.setCalculationRange(xmax = 20)
return profile
示例2: makeRecipe
def makeRecipe(datname):
"""Create a fitting recipe for ellipsoidal SAS data."""
## The Profile
# This will be used to store the observed and calculated I(Q) data.
profile = Profile()
# Load data and add it to the Profile. We use a SASParser to load the data
# properly and pass the metadata along.
parser = SASParser()
parser.parseFile(datname)
profile.loadParsedData(parser)
## The ProfileGenerator
# The SASGenerator is for configuring and calculating a SAS profile. We use
# a sans model to configure and serve as the calculation engine of the
# generator. This allows us to use the full sans model creation
# capabilities, and tie this into SrFit when we want to fit a model to
# data. The documentation for the various sans models can be found at
# http://danse.chem.utk.edu/sansview.html.
from sans.models.EllipsoidModel import EllipsoidModel
model = EllipsoidModel()
generator = SASGenerator("generator", model)
## The FitContribution
# Here we associate the Profile and ProfileGenerator, as has been done
# before.
contribution = FitContribution("ellipsoid")
contribution.addProfileGenerator(generator)
contribution.setProfile(profile, xname = "q")
# We want to fit the log of the signal to the log of the data so that the
# higher-Q information remains significant. There are no I(Q) uncertainty
# values with the data, so we do not need to worry about the effect this
# will have on the estimated parameter uncertainties.
contribution.setResidualEquation("log(eq) - log(y)")
## Make the FitRecipe and add the FitContribution.
recipe = FitRecipe()
recipe.addContribution(contribution)
## Configure the fit variables
# The SASGenerator uses the parameters from the params and dispersion
# attribues of the model. These vary from model to model, but are adopted
# as SrFit Parameters within the generator. Whereas the dispersion
# parameters are accessible as, e.g. "radius.width", within the
# SASGenerator these are named like "radius_width".
#
# We want to fit the scale factor, radii and background factors.
recipe.addVar(generator.scale, 1)
recipe.addVar(generator.radius_a, 50)
recipe.addVar(generator.radius_b, 500)
recipe.addVar(generator.background, 0)
# Give the recipe away so it can be used!
return recipe
示例3: makeRecipe
def makeRecipe(molecule, datname):
"""Create a recipe that uses the DebyePDFGenerator."""
## The Profile
profile = Profile()
# Load data and add it to the profile
profile.loadtxt(datname)
profile.setCalculationRange(xmin=1.2, xmax=8)
## The ProfileGenerator
# Create a DebyePDFGenerator named "G".
generator = DebyePDFGenerator("G")
generator.setStructure(molecule)
# These are metadata needed by the generator
generator.setQmin(0.68)
generator.setQmax(22)
## The FitContribution
contribution = FitContribution("bucky")
contribution.addProfileGenerator(generator)
contribution.setProfile(profile, xname = "r")
# Make a FitRecipe.
recipe = FitRecipe()
recipe.addContribution(contribution)
# Specify which parameters we want to refine.
c60 = generator.phase
# We're not going to refine the ADPs. However, every atom must have a
# small, but finite ADP for the PDF calculator to work properly.
atoms = c60.getScatterers()
for atom in atoms:
atom.Uiso.value = 0.001
# Scale factor. We cannot optimize this efficiently, so we take the value
# from a previous refinement. In general, care must be taken to properly
# determine the scale of the profile, or to make sure that the residual is
# not affected by the scale.
generator.scale.value = 1.24457360e+4
# Allow every atom to move. We define the bounds to be a window of radius
# 0.1 centered on the current value of the position.
win = 0.1
for idx, atom in enumerate(atoms):
xname, yname, zname = getXYZNames(idx)
recipe.addVar(atom.x, name = xname).boundWindow(win)
recipe.addVar(atom.y, name = yname).boundWindow(win)
recipe.addVar(atom.z, name = zname).boundWindow(win)
return recipe
示例4: makeRecipe
def makeRecipe():
"""Create a recipe that uses the GaussianGenerator.
This will create a FitContribution that uses the GaussianGenerator,
associate this with a Profile, and use this to define a FitRecipe.
"""
## The Profile
# Create a Profile to hold the experimental and calculated signal.
profile = Profile()
# Load data and add it to the profile. This uses the loadtxt function from
# numpy.
profile.loadtxt("data/gaussian.dat")
## The ProfileGenerator
# Create a GaussianGenerator named "g". This will be the name we use to
# refer to the generator from within the FitContribution equation.
generator = GaussianGenerator("g")
## The FitContribution
# Create a FitContribution that will associate the Profile with the
# GaussianGenerator. The GaussianGenerator will be accessible as an
# attribute of the FitContribution by its name ("g"). Note that this will
# set the fitting equation to "g", which calls the GaussianGenerator.
contribution = FitContribution("g1")
contribution.addProfileGenerator(generator)
contribution.setProfile(profile)
## The FitRecipe
# Now we create the FitRecipe and add the FitContribution.
recipe = FitRecipe()
recipe.addContribution(contribution)
# Specify which Parameters we want to vary in the fit. This will add
# Variables to the FitRecipe that directly modify the Parameters of the
# FitContribution.
#
# We create a variable for each Parameter of the GaussianGenerator. Note
# that the Parameters belong to the GaussianGenerator, not the
# FitContribution as in gaussianrecipe.py. We initialize parameters as in
# gaussianrecipe.py so we can expect the same output.
recipe.addVar(generator.A, 1)
recipe.addVar(generator.x0, 5)
recipe.addVar(generator.sigma, name = "sig")
recipe.sig.value = 1
# Give the recipe away so it can be used!
return recipe
示例5: makeRecipe
def makeRecipe(x, y, dy, A, sig, x0):
"""Make a FitRecipe for fitting a Gaussian curve to data.
"""
profile = Profile()
profile.setObservedProfile(x, y, dy)
contribution = FitContribution("g1")
contribution.setProfile(profile, xname="x")
contribution.setEquation("A * exp(-0.5*(x-x0)**2/sigma**2)")
recipe = FitRecipe()
recipe.addContribution(contribution)
recipe.addVar(contribution.A, A)
recipe.addVar(contribution.x0, x0)
recipe.addVar(contribution.sigma, sig)
return recipe
示例6: main
def main():
p = Profile()
p.loadtxt("data/gaussian.dat")
# FitContribution operations
# "|=" - Union of necessary components.
# "<<" - Inject a parameter value
c = FitContribution("g1")
c |= p
c |= "A * exp(-0.5*(x-x0)**2/sigma**2)"
c.A << 0.5
c.x0 << 5
c.sigma << 1
# FitRecipe operations
# "|=" - Union of necessary components.
# "+=" - Add Parameter or create a new one. Each tuple is a set of
# arguments for either setVar or addVar.
# "*=" - Constrain a parameter. Think of "*" as a push-pin holding one
# parameter's value to that of another.
# "%=" - Restrain a parameter or equation. Think of "%" as a rope
# loosely tying parameters to a value.
r = FitRecipe()
r |= c
r += (c.A, 0.5), (c.x0, 5), "sig"
r *= c.sigma, "sig"
r %= c.A, 0.5, 0.5
from gaussianrecipe import scipyOptimize
scipyOptimize(r)
res = FitResults(r)
# Print the results.
res.printResults()
# Plot the results.
from gaussianrecipe import plotResults
plotResults(r)
return
示例7: _makeRecipe
def _makeRecipe(self, x, y, dy):
'''Make a FitRecipe for fitting a Gaussian curve to data.
'''
profile = Profile()
profile.setObservedProfile(x, y, dy)
contribution = FitContribution("g1")
contribution.setProfile(profile, xname="x")
contribution.registerStringFunction(
'1/sqrt(2 * pi * sig**2)', name='gaussnorm')
contribution.setEquation(
"A * gaussnorm * exp(-0.5 * (x - x0)**2/sig**2)")
recipe = FitRecipe()
recipe.addContribution(contribution)
recipe.addVar(contribution.A)
recipe.addVar(contribution.x0)
recipe.addVar(contribution.sig)
recipe.clearFitHooks()
self.recipe = recipe
return
示例8: makeRecipe
def makeRecipe(ciffile, grdata):
"""Make a recipe to model a crystal-like nanoparticle PDF."""
# Set up a PDF fit as has been done in other examples.
pdfprofile = Profile()
pdfparser = PDFParser()
pdfparser.parseFile(grdata)
pdfprofile.loadParsedData(pdfparser)
pdfprofile.setCalculationRange(xmin = 0.1, xmax = 20)
pdfcontribution = FitContribution("pdf")
pdfcontribution.setProfile(pdfprofile, xname = "r")
pdfgenerator = PDFGenerator("G")
pdfgenerator.setQmax(30.0)
stru = CreateCrystalFromCIF(file(ciffile))
pdfgenerator.setStructure(stru)
pdfcontribution.addProfileGenerator(pdfgenerator)
# Register the nanoparticle shape factor.
from diffpy.srfit.pdf.characteristicfunctions import sphericalCF
pdfcontribution.registerFunction(sphericalCF, name = "f")
# Now we set up the fitting equation.
pdfcontribution.setEquation("f * G")
# Now make the recipe. Make sure we fit the characteristic function shape
# parameters, in this case 'psize', which is the diameter of the particle.
recipe = FitRecipe()
recipe.addContribution(pdfcontribution)
phase = pdfgenerator.phase
for par in phase.sgpars:
recipe.addVar(par)
recipe.addVar(pdfcontribution.psize, 20)
recipe.addVar(pdfgenerator.scale, 1)
recipe.addVar(pdfgenerator.delta2, 0)
recipe.B11_0 = 0.1
return recipe
示例9: makeRecipe
def makeRecipe(niciffile, siciffile, datname):
"""Create a fitting recipe for crystalline PDF data."""
## The Profile
profile = Profile()
# Load data and add it to the profile
parser = PDFParser()
parser.parseFile(datname)
profile.loadParsedData(parser)
profile.setCalculationRange(xmax = 20)
## The ProfileGenerator
# In order to fit two phases simultaneously, we must use two PDFGenerators.
# PDFGenerator is designed to take care of as little information as it
# must. (Don't do too much, and do it well.) A PDFGenerator can generate
# the signal from only a single phase at a time. So, we will create one
# PDFGenerator for each phase and compose them within the same
# FitContribution. Note that both generators will be associated with the
# same Profile within the FitContribution, so they will both be
# automatically configured according to the metadata.
#
# The generator for the nickel phase. We call it "G_ni" and will use this
# name later when we set the fitting equation in the FitContribution.
generator_ni = PDFGenerator("G_ni")
stru = CreateCrystalFromCIF(file(niciffile))
generator_ni.setStructure(stru)
# The generator for the silicon phase. We call it "G_si".
generator_si = PDFGenerator("G_si")
stru = CreateCrystalFromCIF(file(siciffile))
generator_si.setStructure(stru)
## The FitContribution
# Add both generators to the FitContribution. Add the Profile. This will
# send the metadata to the generators.
contribution = FitContribution("nisi")
contribution.addProfileGenerator(generator_ni)
contribution.addProfileGenerator(generator_si)
contribution.setProfile(profile, xname = "r")
# Write the fitting equation. We want to sum the PDFs from each phase and
# multiply it by a scaling factor. We also want a certain phase scaling
# relationship between the PDFs which we will enforce with constraints in
# the FitRecipe.
contribution.setEquation("scale * (G_ni + G_si)")
# Make the FitRecipe and add the FitContribution.
recipe = FitRecipe()
recipe.addContribution(contribution)
## Configure the fit variables
# Start by configuring the scale factor and resolution factors.
# We want the sum of the phase scale factors to be 1.
recipe.newVar("scale_ni", 0.1)
recipe.constrain(generator_ni.scale, "scale_ni")
recipe.constrain(generator_si.scale, "1 - scale_ni")
# We also want the resolution factor to be the same on each.
recipe.newVar("qdamp", 0.03)
recipe.constrain(generator_ni.qdamp, "qdamp")
recipe.constrain(generator_si.qdamp, "qdamp")
# Vary the gloabal scale as well.
recipe.addVar(contribution.scale, 1)
# Now we can configure the structural parameters. Since we're using
# ObjCrystCrystalParSets, the space group constraints are automatically
# applied to each phase. We must selectively vary the free parameters.
#
# First the nickel parameters
phase_ni = generator_ni.phase
for par in phase_ni.sgpars:
recipe.addVar(par, name = par.name + "_ni")
recipe.addVar(generator_ni.delta2, name = "delta2_ni")
# Next the silicon parameters
phase_si = generator_si.phase
for par in phase_si.sgpars:
recipe.addVar(par, name = par.name + "_si")
recipe.addVar(generator_si.delta2, name = "delta2_si")
# We have prior information from the earlier examples so we'll use it here
# in the form of restraints.
#
# The nickel lattice parameter was measured to be 3.527. The uncertainty
# values are invalid for that measurement, since the data from which it is
# derived has no uncertainty. Thus, we will tell the recipe to scale the
# residual, which means that it will be weighted as much as the average
# data point during the fit.
recipe.restrain("a_ni", lb = 3.527, ub = 3.527, scaled = True)
# Now we do the same with the delta2 and Biso parameters (remember that
# Biso = 8*pi**2*Uiso)
recipe.restrain("delta2_ni", lb = 2.22, ub = 2.22, scaled = True)
recipe.restrain("Biso_0_ni", lb = 0.454, ub = 0.454, scaled = True)
#
# We can do the same with the silicon values. We haven't done a thorough
# job of measuring the uncertainties in the results, so we'll scale these
# as well.
recipe.restrain("a_si", lb = 5.430, ub = 5.430, scaled = True)
recipe.restrain("delta2_si", lb = 3.54, ub = 3.54, scaled = True)
recipe.restrain("Biso_0_si", lb = 0.645, ub = 0.645, scaled = True)
#.........這裏部分代碼省略.........
示例10: makeRecipe
def makeRecipe(ciffile, datname):
"""Create a fitting recipe for crystalline PDF data."""
## The Profile
# This will be used to store the observed and calculated PDF profile.
profile = Profile()
# Load data and add it to the Profile. As before we use a PDFParser. The
# metadata is still passed to the PDFGenerator later on. The interaction
# between the PDFGenerator and the metadata does not depend on type of
# structure being refined.
parser = PDFParser()
parser.parseFile(datname)
profile.loadParsedData(parser)
profile.setCalculationRange(xmax = 20)
## The ProfileGenerator
# This time we use the CreateCrystalFromCIF method of pyobjcryst.crystal to
# create a Crystal object. That object is passed to the PDFGenerator as in
# the previous example.
generator = PDFGenerator("G")
stru = CreateCrystalFromCIF(file(ciffile))
generator.setStructure(stru)
generator.setQmax(40.0)
## The FitContribution
contribution = FitContribution("nickel")
contribution.addProfileGenerator(generator)
contribution.setProfile(profile, xname = "r")
# Make the FitRecipe and add the FitContribution.
recipe = FitRecipe()
recipe.addContribution(contribution)
## Configure the fit variables
# As before, we get a handle to the structure parameter set. In this case,
# it is a ObjCrystCrystalParSet instance that was created when we called
# 'setStructure' above. The ObjCrystCrystalParSet has different Parameters
# and options than the DiffpyStructureParSet used in the last example. See
# its documentation in diffpy.srfit.structure.objcrystparset.
phase = generator.phase
# Here is where we created space group constraints in the previous example.
# The difference in this example is that the ObjCrystCrystalParSet is aware
# of space groups, and the DiffpyStructureParSet is not. Constraints are
# created internally when "sgpars" attribute is called for. These
# constriants get enforced within the ObjCrystCrystalParSet. Free
# Parameters are stored within the 'sgpars' member of the
# ObjCrystCrystalParSet, which is the same as the object returned from
# 'constrainAsSpaceGroup'.
#
# As before, we have one free lattice parameter ('a'). We can simplify
# things by iterating through all the sgpars.
for par in phase.sgpars:
recipe.addVar(par)
# set the initial thermal factor to a non-zero value
assert hasattr(recipe, 'B11_0')
recipe.B11_0 = 0.1
# We now select non-structural parameters to refine.
# This controls the scaling of the PDF.
recipe.addVar(generator.scale, 1)
# This is a peak-damping resolution term.
recipe.addVar(generator.qdamp, 0.01)
# This is a vibrational correlation term that sharpens peaks at low-r.
recipe.addVar(generator.delta2, 5)
# Give the recipe away so it can be used!
return recipe
示例11: makeRecipe
def makeRecipe(stru1, stru2, datname):
"""Create a fitting recipe for crystalline PDF data."""
## The Profile
profile = Profile()
# Load data and add it to the profile
parser = PDFParser()
parser.parseFile(datname)
profile.loadParsedData(parser)
profile.setCalculationRange(xmin=1.5, xmax = 45, dx = 0.1)
## The ProfileGenerator
# In order to fit the core and shell phases simultaneously, we must use two
# PDFGenerators.
#
# The generator for the CdS core. We call it "G_CdS" and will use this name
# later when we set the fitting equation in the FitContribution.
generator_cds = PDFGenerator("G_CdS")
generator_cds.setStructure(stru1)
generator_cds.setQmax(26)
generator_cds.qdamp.value = 0.0396
# The generator for the ZnS shell. We call it "G_ZnS".
generator_zns = PDFGenerator("G_ZnS")
generator_zns.setStructure(stru2)
generator_zns.setQmax(26)
generator_zns.qdamp.value = 0.0396
## The FitContribution
# Add both generators and the profile to the FitContribution.
contribution = FitContribution("cdszns")
contribution.addProfileGenerator(generator_cds)
contribution.addProfileGenerator(generator_zns)
contribution.setProfile(profile, xname = "r")
# Set up the characteristic functions. We use a spherical CF for the core
# and a spherical shell CF for the shell. Since this is set up as two
# phases, we implicitly assume that the core-shell correlations contribute
# very little to the PDF.
from diffpy.srfit.pdf.characteristicfunctions import sphericalCF, shellCF
contribution.registerFunction(sphericalCF, name = "f_CdS")
contribution.registerFunction(shellCF, name = "f_ZnS")
# Write the fitting equation. We want to sum the PDFs from each phase and
# multiply it by a scaling factor.
contribution.setEquation("scale * (f_CdS * G_CdS + f_ZnS * G_ZnS)")
# Make the FitRecipe and add the FitContribution.
recipe = FitRecipe()
recipe.addContribution(contribution)
# Vary the inner radius and thickness of the shell. Constrain the core
# diameter to twice the shell radius.
recipe.addVar(contribution.radius, 15)
recipe.addVar(contribution.thickness, 11)
recipe.constrain(contribution.psize, "2 * radius")
## Configure the fit variables
# Start by configuring the scale factor and resolution factors.
# We want the sum of the phase scale factors to be 1.
recipe.newVar("scale_CdS", 0.7)
recipe.constrain(generator_cds.scale, "scale_CdS")
recipe.constrain(generator_zns.scale, "1 - scale_CdS")
# We also want the resolution factor to be the same on each.
# Vary the gloabal scale as well.
recipe.addVar(contribution.scale, 0.3)
# Now we can configure the structural parameters. We tag the different
# structural variables so we can easily turn them on and off in the
# subsequent refinement.
phase_cds = generator_cds.phase
for par in phase_cds.sgpars.latpars:
recipe.addVar(par, name = par.name + "_cds", tag = "lat")
for par in phase_cds.sgpars.adppars:
recipe.addVar(par, 1, name = par.name + "_cds", tag = "adp")
recipe.addVar(phase_cds.sgpars.xyzpars.z_1, name = "z_1_cds", tag = "xyz")
# Since we know these have stacking disorder, constrain the B33 adps for
# each atom type.
recipe.constrain("B33_1_cds", "B33_0_cds")
recipe.addVar(generator_cds.delta2, name = "delta2_cds", value = 5)
phase_zns = generator_zns.phase
for par in phase_zns.sgpars.latpars:
recipe.addVar(par, name = par.name + "_zns", tag = "lat")
for par in phase_zns.sgpars.adppars:
recipe.addVar(par, 1, name = par.name + "_zns", tag = "adp")
recipe.addVar(phase_zns.sgpars.xyzpars.z_1, name = "z_1_zns", tag = "xyz")
recipe.constrain("B33_1_zns", "B33_0_zns")
recipe.addVar(generator_zns.delta2, name = "delta2_zns", value = 2.5)
# Give the recipe away so it can be used!
return recipe
示例12: data
# Plot the generated "observed" data (xobs, yobs).
import matplotlib.pyplot as plt
plt.ion(); plt.clf(); plt.hold(False)
plt.plot(xobs, yobs, 'x')
plt.title('y = 0.5*x + 3 generated with a normal noise at sigma=0.3')
plt.show()
# <demo> --- stop ---
# We are going to define a line fitting regression using SrFit.
# At first we create a SrFit Profile object that holds the observed data.
from diffpy.srfit.fitbase import Profile
linedata = Profile()
linedata.setObservedProfile(xobs, yobs, dyobs)
# The second step is to create a FitContribution object, which associates
# observed profile with a mathematical model for the dependent variable.
from diffpy.srfit.fitbase import FitContribution
linefit = FitContribution('linefit')
linefit.setProfile(linedata)
linefit.setEquation("A * x + B")
# SrFit objects can be examined by calling their show() function. SrFit
# parses the model equation and finds two parameters A, B at independent
# variable x. The values of parameters A, B are at this stage undefined.
linefit.show()
示例13: makeRecipe
def makeRecipe():
"""Make a FitRecipe for fitting three double-gaussian curves to data.
The separation and amplitude ratio of the double peaks follows a specific
relationship. The peaks are broadend according to their position and they
sit on top of a background. We are seeking the absolute locations of the
peaks as well as their amplitudes.
The independent variable is t. The relationship between the double
peaks is
sin(t2) / l2 = sin(t1) / l1
amplitude(peak2) = r * amplitude(peak1)
The values of l1, l2 and r come from experiment. For this example, we
use l1 = 1.012, l2 = 1.0 and r = 0.23.
"""
## The Profile
# Create a Profile to hold the experimental and calculated signal.
profile = Profile()
x, y, dy = profile.loadtxt("data/threedoublepeaks.dat")
# Create the contribution
contribution = FitContribution("peaks")
contribution.setProfile(profile, xname = "t")
pi = numpy.pi
exp = numpy.exp
# This is a building-block of our profile function
def gaussian(t, mu, sig):
return 1/(2*pi*sig**2)**0.5 * exp(-0.5 * ((t-mu)/sig)**2)
contribution.registerFunction(gaussian, name = "peakshape")
def delta(t, mu):
"""Calculate a delta-function.
We don't have perfect precision, so we must make this a very thin
Gaussian.
"""
sig = t[1] - t[0]
return gaussian(t, mu, sig)
contribution.registerFunction(delta)
# Here is another one
bkgdstr = "b0 + b1*t + b2*t**2 + b3*t**3 + b4*t**4 + b5*t**5 + b6*t**6"
contribution.registerStringFunction(bkgdstr, "bkgd")
# Now define our fitting equation. We will hardcode the peak ratios.
contribution.setEquation(
"A1 * ( convolve( delta(t, mu11), peakshape(t, c, sig11) ) \
+ 0.23*convolve( delta(t, mu12), peakshape(t, c, sig12) ) ) + \
A2 * ( convolve( delta(t, mu21), peakshape(t, c, sig21) ) \
+ 0.23*convolve( delta(t, mu22), peakshape(t, c, sig22) ) ) + \
A3 * ( convolve( delta(t, mu31), peakshape(t, c, sig31) ) \
+ 0.23*convolve( delta(t, mu32), peakshape(t, c, sig32) ) ) + \
bkgd")
# c is the center of the gaussian.
contribution.c.value = x[len(x)/2]
## The FitRecipe
# The FitRecipe lets us define what we want to fit. It is where we can
# create variables, constraints and restraints.
recipe = FitRecipe()
# Here we tell the FitRecipe to use our FitContribution. When the FitRecipe
# calculates its residual function, it will call on the FitContribution to
# do part of the work.
recipe.addContribution(contribution)
# Vary the amplitudes for each double peak
recipe.addVar(contribution.A1, 100)
recipe.addVar(contribution.A2, 100)
recipe.addVar(contribution.A3, 100)
# Vary the position of the first of the double peaks
recipe.addVar(contribution.mu11, 13.0)
recipe.addVar(contribution.mu21, 24.0)
recipe.addVar(contribution.mu31, 33.0)
# Constrain the position of the second double peak
from numpy import sin, arcsin
def peakloc(mu):
"""Calculate the location of the second peak given the first."""
l1 = 1.012
l2 = 1.0
return 180 / pi * arcsin( pi / 180 * l2 * sin(mu) / l1 )
recipe.registerFunction(peakloc)
recipe.constrain(contribution.mu12, "peakloc(mu11)")
recipe.constrain(contribution.mu22, "peakloc(mu21)")
recipe.constrain(contribution.mu32, "peakloc(mu31)")
# Vary the width of the peaks. We know the functional form of the peak
# broadening.
sig0 = recipe.newVar("sig0", 0.001)
#.........這裏部分代碼省略.........
示例14: makeRecipe
def makeRecipe(ciffile, grdata, iqdata):
"""Make complex-modeling recipe where I(q) and G(r) are fit
simultaneously.
The fit I(q) is fed into the calculation of G(r), which provides feedback
for the fit parameters of both.
"""
# Create a PDF contribution as before
pdfprofile = Profile()
pdfparser = PDFParser()
pdfparser.parseFile(grdata)
pdfprofile.loadParsedData(pdfparser)
pdfprofile.setCalculationRange(xmin = 0.1, xmax = 20)
pdfcontribution = FitContribution("pdf")
pdfcontribution.setProfile(pdfprofile, xname = "r")
pdfgenerator = PDFGenerator("G")
pdfgenerator.setQmax(30.0)
stru = CreateCrystalFromCIF(file(ciffile))
pdfgenerator.setStructure(stru)
pdfcontribution.addProfileGenerator(pdfgenerator)
pdfcontribution.setResidualEquation("resv")
# Create a SAS contribution as well. We assume the nanoparticle is roughly
# elliptical.
sasprofile = Profile()
sasparser = SASParser()
sasparser.parseFile(iqdata)
sasprofile.loadParsedData(sasparser)
sascontribution = FitContribution("sas")
sascontribution.setProfile(sasprofile)
from sans.models.EllipsoidModel import EllipsoidModel
model = EllipsoidModel()
sasgenerator = SASGenerator("generator", model)
sascontribution.addProfileGenerator(sasgenerator)
sascontribution.setResidualEquation("resv")
# Now we set up a characteristic function calculator that depends on the
# sas model.
cfcalculator = SASCF("f", model)
# Register the calculator with the pdf contribution and define the fitting
# equation.
pdfcontribution.registerCalculator(cfcalculator)
# The PDF for a nanoscale crystalline is approximated by
# Gnano = f * Gcryst
pdfcontribution.setEquation("f * G")
# Moving on
recipe = FitRecipe()
recipe.addContribution(pdfcontribution)
recipe.addContribution(sascontribution)
# PDF
phase = pdfgenerator.phase
for par in phase.sgpars:
recipe.addVar(par)
recipe.addVar(pdfgenerator.scale, 1)
recipe.addVar(pdfgenerator.delta2, 0)
# SAS
recipe.addVar(sasgenerator.scale, 1, name = "iqscale")
recipe.addVar(sasgenerator.radius_a, 10)
recipe.addVar(sasgenerator.radius_b, 10)
# Even though the cfcalculator and sasgenerator depend on the same sas
# model, we must still constrain the cfcalculator Parameters so that it is
# informed of changes in the refined parameters.
recipe.constrain(cfcalculator.radius_a, "radius_a")
recipe.constrain(cfcalculator.radius_b, "radius_b")
return recipe
示例15: makeRecipe
def makeRecipe(molecule, datname):
"""Create a recipe that uses the DebyePDFGenerator."""
## The Profile
profile = Profile()
# Load data and add it to the profile
profile.loadtxt(datname)
profile.setCalculationRange(xmin=1.2, xmax=8)
## The ProfileGenerator
# Create a DebyePDFGenerator named "G".
generator = DebyePDFGenerator("G")
generator.setStructure(molecule)
# These are metadata needed by the generator
generator.setQmin(0.68)
generator.setQmax(22)
## The FitContribution
contribution = FitContribution("bucky")
contribution.addProfileGenerator(generator)
contribution.setProfile(profile, xname = "r")
# Make a FitRecipe.
recipe = FitRecipe()
recipe.addContribution(contribution)
# Specify which parameters we want to refine. We'll be using the
# MoleculeParSet within the generator, so let's get a handle to it. See the
# diffpy.srfit.structure.objcryststructure module for more information
# about the MoleculeParSet hierarchy.
c60 = generator.phase
# First, the isotropic thermal displacement factor.
Biso = recipe.newVar("Biso")
for atom in c60.getScatterers():
# We have defined a 'center' atom that is a dummy, which means that it
# has no scattering power. It is only used as a reference point for
# our bond length. We don't want to constrain it.
if not atom.isDummy():
recipe.constrain(atom.Biso, Biso)
# We need to let the molecule expand. If we were modeling it as a crystal,
# we could let the unit cell expand. For instruction purposes, we use a
# Molecule to model C60, and molecules have different modeling options than
# crystals. To make the molecule expand from a central point, we will
# constrain the distance from each atom to a dummy center atom that was
# created with the molecule, and allow that distance to vary. (We could
# also let the nearest-neighbor bond lengths vary, but that would be much
# more difficult to set up.)
center = c60.center
# Create a new Parameter that represents the radius of the molecule. Note
# that we don't give it an initial value. Since the variable is being
# directly constrained to further below, its initial value will be inferred
# from the constraint.
radius = recipe.newVar("radius")
for i, atom in enumerate(c60.getScatterers()):
if atom.isDummy():
continue
# This creates a Parameter that moves the second atom according to the
# bond length. Note that each Parameter needs a unique name.
par = c60.addBondLengthParameter("rad%i"%i, center, atom)
recipe.constrain(par, radius)
# Add the correlation term, scale. The scale is too short to effectively
# determine qdamp.
recipe.addVar(generator.delta2, 2)
recipe.addVar(generator.scale, 1.3e4)
# Give the recipe away so it can be used!
return recipe