當前位置: 首頁>>代碼示例>>Python>>正文


Python FitContribution.setResidualEquation方法代碼示例

本文整理匯總了Python中diffpy.srfit.fitbase.FitContribution.setResidualEquation方法的典型用法代碼示例。如果您正苦於以下問題:Python FitContribution.setResidualEquation方法的具體用法?Python FitContribution.setResidualEquation怎麽用?Python FitContribution.setResidualEquation使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在diffpy.srfit.fitbase.FitContribution的用法示例。


在下文中一共展示了FitContribution.setResidualEquation方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: makeRecipe

# 需要導入模塊: from diffpy.srfit.fitbase import FitContribution [as 別名]
# 或者: from diffpy.srfit.fitbase.FitContribution import setResidualEquation [as 別名]
def makeRecipe(datname):
    """Create a fitting recipe for ellipsoidal SAS data."""

    ## The Profile
    # This will be used to store the observed and calculated I(Q) data.
    profile = Profile()

    # Load data and add it to the Profile. We use a SASParser to load the data
    # properly and pass the metadata along.
    parser = SASParser()
    parser.parseFile(datname)
    profile.loadParsedData(parser)

    ## The ProfileGenerator
    # The SASGenerator is for configuring and calculating a SAS profile. We use
    # a sans model to configure and serve as the calculation engine of the
    # generator. This allows us to use the full sans model creation
    # capabilities, and tie this into SrFit when we want to fit a model to
    # data. The documentation for the various sans models can be found at
    # http://danse.chem.utk.edu/sansview.html.
    from sans.models.EllipsoidModel import EllipsoidModel
    model = EllipsoidModel()
    generator = SASGenerator("generator", model)

    ## The FitContribution
    # Here we associate the Profile and ProfileGenerator, as has been done
    # before. 
    contribution = FitContribution("ellipsoid")
    contribution.addProfileGenerator(generator)
    contribution.setProfile(profile, xname = "q")

    # We want to fit the log of the signal to the log of the data so that the
    # higher-Q information remains significant. There are no I(Q) uncertainty
    # values with the data, so we do not need to worry about the effect this
    # will have on the estimated parameter uncertainties.
    contribution.setResidualEquation("log(eq) - log(y)")

    ## Make the FitRecipe and add the FitContribution.
    recipe = FitRecipe()
    recipe.addContribution(contribution)

    ## Configure the fit variables
    # The SASGenerator uses the parameters from the params and dispersion
    # attribues of the model. These vary from model to model, but are adopted
    # as SrFit Parameters within the generator. Whereas the dispersion
    # parameters are accessible as, e.g. "radius.width", within the
    # SASGenerator these are named like "radius_width".
    #
    # We want to fit the scale factor, radii and background factors.
    recipe.addVar(generator.scale, 1)
    recipe.addVar(generator.radius_a, 50)
    recipe.addVar(generator.radius_b, 500)
    recipe.addVar(generator.background, 0)
    
    # Give the recipe away so it can be used!
    return recipe
開發者ID:cfarrow,項目名稱:diffpy.srfit,代碼行數:58,代碼來源:ellipsoidsas.py

示例2: makeRecipe

# 需要導入模塊: from diffpy.srfit.fitbase import FitContribution [as 別名]
# 或者: from diffpy.srfit.fitbase.FitContribution import setResidualEquation [as 別名]
def makeRecipe(ciffile, grdata, iqdata):
    """Make complex-modeling recipe where I(q) and G(r) are fit
    simultaneously.

    The fit I(q) is fed into the calculation of G(r), which provides feedback
    for the fit parameters of both.
    
    """

    # Create a PDF contribution as before
    pdfprofile = Profile()
    pdfparser = PDFParser()
    pdfparser.parseFile(grdata)
    pdfprofile.loadParsedData(pdfparser)
    pdfprofile.setCalculationRange(xmin = 0.1, xmax = 20)

    pdfcontribution = FitContribution("pdf")
    pdfcontribution.setProfile(pdfprofile, xname = "r")

    pdfgenerator = PDFGenerator("G")
    pdfgenerator.setQmax(30.0)
    stru = CreateCrystalFromCIF(file(ciffile))
    pdfgenerator.setStructure(stru)
    pdfcontribution.addProfileGenerator(pdfgenerator)
    pdfcontribution.setResidualEquation("resv")

    # Create a SAS contribution as well. We assume the nanoparticle is roughly
    # elliptical.
    sasprofile = Profile()
    sasparser = SASParser()
    sasparser.parseFile(iqdata)
    sasprofile.loadParsedData(sasparser)

    sascontribution = FitContribution("sas")
    sascontribution.setProfile(sasprofile)

    from sans.models.EllipsoidModel import EllipsoidModel
    model = EllipsoidModel()
    sasgenerator = SASGenerator("generator", model)
    sascontribution.addProfileGenerator(sasgenerator)
    sascontribution.setResidualEquation("resv")

    # Now we set up a characteristic function calculator that depends on the
    # sas model.
    cfcalculator = SASCF("f", model)

    # Register the calculator with the pdf contribution and define the fitting
    # equation.
    pdfcontribution.registerCalculator(cfcalculator)
    # The PDF for a nanoscale crystalline is approximated by
    # Gnano = f * Gcryst
    pdfcontribution.setEquation("f * G")

    # Moving on
    recipe = FitRecipe()
    recipe.addContribution(pdfcontribution)
    recipe.addContribution(sascontribution)

    # PDF
    phase = pdfgenerator.phase
    for par in phase.sgpars:
        recipe.addVar(par)

    recipe.addVar(pdfgenerator.scale, 1)
    recipe.addVar(pdfgenerator.delta2, 0)

    # SAS
    recipe.addVar(sasgenerator.scale, 1, name = "iqscale")
    recipe.addVar(sasgenerator.radius_a, 10)
    recipe.addVar(sasgenerator.radius_b, 10)

    # Even though the cfcalculator and sasgenerator depend on the same sas
    # model, we must still constrain the cfcalculator Parameters so that it is
    # informed of changes in the refined parameters.
    recipe.constrain(cfcalculator.radius_a, "radius_a")
    recipe.constrain(cfcalculator.radius_b, "radius_b")

    return recipe
開發者ID:cfarrow,項目名稱:diffpy.srfit,代碼行數:80,代碼來源:nppdfsas.py

示例3: makeRecipe

# 需要導入模塊: from diffpy.srfit.fitbase import FitContribution [as 別名]
# 或者: from diffpy.srfit.fitbase.FitContribution import setResidualEquation [as 別名]
def makeRecipe(ciffile, xdatname, ndatname):
    """Create a fitting recipe for crystalline PDF data."""

    ## The Profiles
    # We need a profile for each data set. This means that we will need two
    # FitContributions as well.
    xprofile = Profile()
    nprofile = Profile()

    # Load data and add it to the proper Profile.
    parser = PDFParser()
    parser.parseFile(xdatname)
    xprofile.loadParsedData(parser)
    xprofile.setCalculationRange(xmax = 20)

    parser = PDFParser()
    parser.parseFile(ndatname)
    nprofile.loadParsedData(parser)
    nprofile.setCalculationRange(xmax = 20)

    ## The ProfileGenerators
    # We need one of these for the x-ray data.
    xgenerator = PDFGenerator("G")
    stru = CreateCrystalFromCIF(file(ciffile))
    xgenerator.setStructure(stru)

    # And we need one for the neutron data. We want to refine the same
    # structure object in each PDFGenerator. This would suggest that we add the
    # same Crystal to each. However, if we do that then we will have two
    # Parameters for each Crystal data member (two Parameters for the "a"
    # lattice parameter, etc.), held in different ObjCrystCrystalParSets, each
    # managed by its own PDFGenerator. Thus, changes made to the Crystal
    # through one PDFGenerator will not be known to the other PDFGenerator
    # since their ObjCrystCrystalParSets don't know about each other. The
    # solution is to share ObjCrystCrystalParSets rather than Crystals. This
    # way there is only one Parameter for each Crystal data member. (An
    # alternative to this is to constrain each structure Parameter to be varied
    # to the same variable. The present approach is easier and less error
    # prone.)
    #
    # Tell the neutron PDFGenerator to use the phase from the x-ray
    # PDFGenerator.
    ngenerator = PDFGenerator("G")
    ngenerator.setPhase(xgenerator.phase)

    ## The FitContributions
    # We associate the x-ray PDFGenerator and Profile in one FitContribution...
    xcontribution = FitContribution("xnickel")
    xcontribution.addProfileGenerator(xgenerator)
    xcontribution.setProfile(xprofile, xname = "r")
    # and the neutron objects in another.
    ncontribution = FitContribution("nnickel")
    ncontribution.addProfileGenerator(ngenerator)
    ncontribution.setProfile(nprofile, xname = "r")

    # This example is different than the previous ones in that we are composing
    # a residual function from other residuals (one for the x-ray contribution
    # and one for the neutron contribution). The relative magnitude of these
    # residuals effectively determines the influence of each contribution over
    # the fit. This is a problem in this case because the x-ray data has
    # uncertainty values associated with it (on the order of 1e-4), and the
    # chi^2 residual is proportional to 1 / uncertainty**2. The neutron has no
    # uncertainty, so it's chi^2 is proportional to 1. Thus, my optimizing
    # chi^2 we would give the neutron data practically no weight in the fit. To
    # get around this, we will optimize a different metric.
    #
    # The contribution's residual can be either chi^2, Rw^2, or custom crafted.
    # In this case, we should minimize Rw^2 of each contribution so that each
    # one can contribute roughly equally to the fit.
    xcontribution.setResidualEquation("resv")
    ncontribution.setResidualEquation("resv")

    # Make the FitRecipe and add the FitContributions.
    recipe = FitRecipe()
    recipe.addContribution(xcontribution)
    recipe.addContribution(ncontribution)

    # Now we vary and constrain Parameters as before.
    recipe.addVar(xgenerator.scale, 1, "xscale")
    recipe.addVar(ngenerator.scale, 1, "nscale")
    recipe.addVar(xgenerator.qdamp, 0.01, "xqdamp")
    recipe.addVar(ngenerator.qdamp, 0.01, "nqdamp")
    # delta2 is a non-structual material propery. Thus, we constrain together
    # delta2 Parameter from each PDFGenerator.
    delta2 = recipe.newVar("delta2", 2)
    recipe.constrain(xgenerator.delta2, delta2)
    recipe.constrain(ngenerator.delta2, delta2)

    # We only need to constrain phase properties once since there is a single
    # ObjCrystCrystalParSet for the Crystal.
    phase = xgenerator.phase
    for par in phase.sgpars:
        recipe.addVar(par)
    recipe.B11_0 = 0.1

    # Give the recipe away so it can be used!
    return recipe
開發者ID:alperkinaci,項目名稱:diffpy.srfit,代碼行數:99,代碼來源:crystalpdftwodata.py


注:本文中的diffpy.srfit.fitbase.FitContribution.setResidualEquation方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。