當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow_models.TensorflowGraph類代碼示例

本文整理匯總了Python中deepchem.models.tensorflow_models.TensorflowGraph的典型用法代碼示例。如果您正苦於以下問題:Python TensorflowGraph類的具體用法?Python TensorflowGraph怎麽用?Python TensorflowGraph使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。


在下文中一共展示了TensorflowGraph類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: build

  def build(self, graph, name_scopes, training):
    """Constructs the graph architecture of model: n_tasks * sigmoid nodes.

    This method creates the following Placeholders:
      mol_features: Molecule descriptor (e.g. fingerprint) tensor with shape
        batch_size x n_features.
    """
    placeholder_scope = TensorflowGraph.get_placeholder_scope(
        graph, name_scopes)
    n_features = self.n_features
    with graph.as_default():
      with placeholder_scope:
        self.mol_features = tf.placeholder(
            tf.float32,
            shape=[None, n_features],
            name='mol_features')

      weight_init_stddevs = self.weight_init_stddevs
      bias_init_consts = self.bias_init_consts
      lg_list = []
      for task in range(self.n_tasks):
        #setting up n_tasks nodes(output nodes)
        lg = model_ops.fully_connected_layer(
            tensor=self.mol_features,
            size = 1,
            weight_init=tf.truncated_normal(
                shape=[self.n_features, 1],
                stddev=weight_init_stddevs[0]),
            bias_init=tf.constant(value=bias_init_consts[0],
                                  shape=[1]))
        lg_list.append(lg)

    return lg_list
開發者ID:bowenliu16,項目名稱:deepchem,代碼行數:33,代碼來源:lr.py

示例2: construct_feed_dict

  def construct_feed_dict(self, X_b, y_b=None, w_b=None, ids_b=None):
    """Construct a feed dictionary from minibatch data.

    TODO(rbharath): ids_b is not used here. Can we remove it?

    Args:
      X_b: np.ndarray of shape (batch_size, n_features)
      y_b: np.ndarray of shape (batch_size, n_tasks)
      w_b: np.ndarray of shape (batch_size, n_tasks)
      ids_b: List of length (batch_size) with datapoint identifiers.
    """ 
    orig_dict = {}
    orig_dict["mol_features"] = X_b
    for task in range(self.n_tasks):
      if y_b is not None:
        orig_dict["labels_%d" % task] = to_one_hot(y_b[:, task])
      else:
        # Dummy placeholders
        orig_dict["labels_%d" % task] = np.squeeze(to_one_hot(
            np.zeros((self.batch_size,))))
      if w_b is not None:
        orig_dict["weights_%d" % task] = w_b[:, task]
      else:
        # Dummy placeholders
        orig_dict["weights_%d" % task] = np.ones(
            (self.batch_size,)) 
    return TensorflowGraph.get_feed_dict(orig_dict)
開發者ID:apappu97,項目名稱:deepchem,代碼行數:27,代碼來源:fcnet.py

示例3: construct_task_feed_dict

  def construct_task_feed_dict(self,
                               this_task,
                               X_b,
                               y_b=None,
                               w_b=None,
                               ids_b=None):
    """Construct a feed dictionary from minibatch data.

    TODO(rbharath): ids_b is not used here. Can we remove it?

    Args:
      X_b: np.ndarray of shape (batch_size, n_features)
      y_b: np.ndarray of shape (batch_size, n_tasks)
      w_b: np.ndarray of shape (batch_size, n_tasks)
      ids_b: List of length (batch_size) with datapoint identifiers.
    """
    orig_dict = {}
    orig_dict["mol_features"] = X_b
    n_samples = len(X_b)
    for task in range(self.n_tasks):
      if (this_task == task) and y_b is not None:
        #orig_dict["labels_%d" % task] = np.reshape(y_b[:, task], (n_samples, 1))
        orig_dict["labels_%d" % task] = np.reshape(y_b[:, task], (n_samples,))
      else:
        # Dummy placeholders
        #orig_dict["labels_%d" % task] = np.zeros((n_samples, 1))
        orig_dict["labels_%d" % task] = np.zeros((n_samples,))
      if (this_task == task) and w_b is not None:
        #orig_dict["weights_%d" % task] = np.reshape(w_b[:, task], (n_samples, 1))
        orig_dict["weights_%d" % task] = np.reshape(w_b[:, task], (n_samples,))
      else:
        # Dummy placeholders
        #orig_dict["weights_%d" % task] = np.zeros((n_samples, 1)) 
        orig_dict["weights_%d" % task] = np.zeros((n_samples,))
    return TensorflowGraph.get_feed_dict(orig_dict)
開發者ID:joegomes,項目名稱:deepchem,代碼行數:35,代碼來源:progressive_multitask.py

示例4: build

  def build(self, graph, name_scopes, training):
    """Constructs the graph architecture as specified in its config.

    This method creates the following Placeholders:
      mol_features: Molecule descriptor (e.g. fingerprint) tensor with shape
        batch_size x n_features.
    """
    n_features = self.n_features
    placeholder_scope = TensorflowGraph.get_placeholder_scope(
        graph, name_scopes)
    with graph.as_default():
      with placeholder_scope:
        self.mol_features = tf.placeholder(
            tf.float32,
            shape=[None, n_features],
            name='mol_features')

      layer_sizes = self.layer_sizes
      weight_init_stddevs = self.weight_init_stddevs
      bias_init_consts = self.bias_init_consts
      dropouts = self.dropouts
      lengths_set = {
          len(layer_sizes),
          len(weight_init_stddevs),
          len(bias_init_consts),
          len(dropouts),
          }
      assert len(lengths_set) == 1, 'All layer params must have same length.'
      n_layers = lengths_set.pop()
      assert n_layers > 0, 'Must have some layers defined.'

      prev_layer = self.mol_features
      prev_layer_size = n_features 
      for i in range(n_layers):
        layer = tf.nn.relu(model_ops.fully_connected_layer(
            tensor=prev_layer,
            size=layer_sizes[i],
            weight_init=tf.truncated_normal(
                shape=[prev_layer_size, layer_sizes[i]],
                stddev=weight_init_stddevs[i]),
            bias_init=tf.constant(value=bias_init_consts[i],
                                  shape=[layer_sizes[i]])))
        layer = model_ops.dropout(layer, dropouts[i])
        prev_layer = layer
        prev_layer_size = layer_sizes[i]

      output = []
      for task in range(self.n_tasks):
        output.append(tf.squeeze(
            model_ops.fully_connected_layer(
                tensor=prev_layer,
                size=layer_sizes[i],
                weight_init=tf.truncated_normal(
                    shape=[prev_layer_size, 1],
                    stddev=weight_init_stddevs[i]),
                bias_init=tf.constant(value=bias_init_consts[i],
                                      shape=[1]))))
      return output
開發者ID:apappu97,項目名稱:deepchem,代碼行數:58,代碼來源:fcnet.py

示例5: add_label_placeholders

 def add_label_placeholders(self, graph, name_scopes):
   #label placeholders with size batch_size * 1
   labels = []
   placeholder_scope = TensorflowGraph.get_placeholder_scope(graph, name_scopes)
   with placeholder_scope:
     for task in range(self.n_tasks):
       labels.append(tf.identity(
           tf.placeholder(tf.float32, shape=[None,1],
                          name='labels_%d' % task)))
   return labels
開發者ID:bowenliu16,項目名稱:deepchem,代碼行數:10,代碼來源:lr.py

示例6: add_training_cost

  def add_training_cost(self, graph, name_scopes, output, labels, weights):
    with graph.as_default():
      epsilon = 1e-3  # small float to avoid dividing by zero
      weighted_costs = []  # weighted costs for each example
      gradient_costs = []  # costs used for gradient calculation

      with TensorflowGraph.shared_name_scope('costs', graph, name_scopes):
        for task in range(self.n_tasks):
          task_str = str(task).zfill(len(str(self.n_tasks)))
          with TensorflowGraph.shared_name_scope('cost_{}'.format(task_str),
                                                 graph, name_scopes):
            with tf.name_scope('weighted'):
              weighted_cost = self.cost(output[task], labels[task],
                                        weights[task])
              weighted_costs.append(weighted_cost)

            with tf.name_scope('gradient'):
              # Note that we divide by the batch size and not the number of
              # non-zero weight examples in the batch.  Also, instead of using
              # tf.reduce_mean (which can put ops on the CPU) we explicitly
              # calculate with div/sum so it stays on the GPU.
              gradient_cost = tf.div(
                  tf.reduce_sum(weighted_cost), self.batch_size)
              gradient_costs.append(gradient_cost)

        # aggregated costs
        with TensorflowGraph.shared_name_scope('aggregated', graph,
                                               name_scopes):
          with tf.name_scope('gradient'):
            loss = tf.add_n(gradient_costs)

          # weight decay
          if self.penalty != 0.0:
            # using self-defined regularization
            penalty = weight_decay(self.penalty_type, self.penalty)
            loss += penalty

      return loss
開發者ID:joegomes,項目名稱:deepchem,代碼行數:38,代碼來源:lr.py

示例7: add_task_training_costs

  def add_task_training_costs(self, graph, name_scopes, outputs, labels,
                              weights):
    """Adds the training costs for each task.
    
    Since each task is trained separately, each task is optimized w.r.t a separate
    task.

    TODO(rbharath): Figure out how to support weight decay for this model.
    Since each task is trained separately, weight decay should only be used
    on weights in column for that task.

    Parameters
    ----------
    graph: tf.Graph
      Graph for the model.
    name_scopes: dict
      Contains all the scopes for model
    outputs: list
      List of output tensors from model.
    weights: list
      List of weight placeholders for model.
    """
    task_costs = {}
    with TensorflowGraph.shared_name_scope('costs', graph, name_scopes):
      for task in range(self.n_tasks):
        with TensorflowGraph.shared_name_scope('cost_%d' % task, graph,
                                               name_scopes):
          weighted_cost = self.cost(outputs[task], labels[task], weights[task])

          # Note that we divide by the batch size and not the number of
          # non-zero weight examples in the batch.  Also, instead of using
          # tf.reduce_mean (which can put ops on the CPU) we explicitly
          # calculate with div/sum so it stays on the GPU.
          task_cost = tf.div(tf.reduce_sum(weighted_cost), self.batch_size)
          task_costs[task] = task_cost

    return task_costs
開發者ID:joegomes,項目名稱:deepchem,代碼行數:37,代碼來源:progressive_multitask.py

示例8: build

  def build(self, graph, name_scopes, training):
    """Constructs the graph architecture of model: n_tasks * sigmoid nodes.

    This method creates the following Placeholders:
      mol_features: Molecule descriptor (e.g. fingerprint) tensor with shape
        batch_size x n_features.
    """
    placeholder_scope = TensorflowGraph.get_placeholder_scope(graph,
                                                              name_scopes)
    n_features = self.n_features
    with graph.as_default():
      with placeholder_scope:
        mol_features = tf.placeholder(
            tf.float32, shape=[None, n_features], name='mol_features')

      weight_init_stddevs = self.weight_init_stddevs
      bias_init_consts = self.bias_init_consts
      lg_list = []

      label_placeholders = self.add_label_placeholders(graph, name_scopes)
      weight_placeholders = self.add_example_weight_placeholders(graph,
                                                                 name_scopes)
      if training:
        graph.queue = tf.FIFOQueue(
            capacity=5,
            dtypes=[tf.float32] *
            (len(label_placeholders) + len(weight_placeholders) + 1))
        graph.enqueue = graph.queue.enqueue([mol_features] + label_placeholders
                                            + weight_placeholders)
        queue_outputs = graph.queue.dequeue()
        labels = queue_outputs[1:len(label_placeholders) + 1]
        weights = queue_outputs[len(label_placeholders) + 1:]
        prev_layer = queue_outputs[0]
      else:
        labels = label_placeholders
        weights = weight_placeholders
        prev_layer = mol_features

      for task in range(self.n_tasks):
        #setting up n_tasks nodes(output nodes)
        lg = model_ops.fully_connected_layer(
            tensor=prev_layer,
            size=1,
            weight_init=tf.truncated_normal(
                shape=[self.n_features, 1], stddev=weight_init_stddevs[0]),
            bias_init=tf.constant(value=bias_init_consts[0], shape=[1]))
        lg_list.append(lg)
    return (lg_list, labels, weights)
開發者ID:joegomes,項目名稱:deepchem,代碼行數:48,代碼來源:lr.py

示例9: build

  def build(self, graph, name_scopes, training):
    """Constructs the graph architecture of IRV as described in:
       
       https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2750043/
    """
    placeholder_scope = TensorflowGraph.get_placeholder_scope(graph,
                                                              name_scopes)
    K = self.K
    with graph.as_default():
      output = []
      with placeholder_scope:
        mol_features = tf.placeholder(
            tf.float32, shape=[None, self.n_features], name='mol_features')
      with tf.name_scope('variable'):
        V = tf.Variable(tf.constant([0.01, 1.]), name="vote", dtype=tf.float32)
        W = tf.Variable(tf.constant([1., 1.]), name="w", dtype=tf.float32)
        b = tf.Variable(tf.constant([0.01]), name="b", dtype=tf.float32)
        b2 = tf.Variable(tf.constant([0.01]), name="b2", dtype=tf.float32)

      label_placeholders = self.add_label_placeholders(graph, name_scopes)
      weight_placeholders = self.add_example_weight_placeholders(graph,
                                                                 name_scopes)
      if training:
        graph.queue = tf.FIFOQueue(
            capacity=5,
            dtypes=[tf.float32] *
            (len(label_placeholders) + len(weight_placeholders) + 1))
        graph.enqueue = graph.queue.enqueue([mol_features] + label_placeholders
                                            + weight_placeholders)
        queue_outputs = graph.queue.dequeue()
        labels = queue_outputs[1:len(label_placeholders) + 1]
        weights = queue_outputs[len(label_placeholders) + 1:]
        features = queue_outputs[0]
      else:
        labels = label_placeholders
        weights = weight_placeholders
        features = mol_features

      for count in range(self.n_tasks):
        similarity = features[:, 2 * K * count:(2 * K * count + K)]
        ys = tf.to_int32(features[:, (2 * K * count + K):2 * K * (count + 1)])
        R = b + W[0] * similarity + W[1] * tf.constant(
            np.arange(K) + 1, dtype=tf.float32)
        R = tf.sigmoid(R)
        z = tf.reduce_sum(R * tf.gather(V, ys), axis=1) + b2
        output.append(tf.reshape(z, shape=[-1, 1]))
    return (output, labels, weights)
開發者ID:joegomes,項目名稱:deepchem,代碼行數:47,代碼來源:IRV.py

示例10: construct_feed_dict

  def construct_feed_dict(self, X_b, y_b=None, w_b=None, ids_b=None):

    orig_dict = {}
    orig_dict["mol_features"] = X_b
    for task in range(self.n_tasks):
      if y_b is not None:
        y_2column = to_one_hot(y_b[:, task])
        # fix the size to be [?,1]
        orig_dict["labels_%d" % task] = y_2column[:, 1:2]
      else:
        # Dummy placeholders
        orig_dict["labels_%d" % task] = np.zeros((self.batch_size, 1))
      if w_b is not None:
        orig_dict["weights_%d" % task] = w_b[:, task]
      else:
        # Dummy placeholders
        orig_dict["weights_%d" % task] = np.ones((self.batch_size,))
    return TensorflowGraph.get_feed_dict(orig_dict)
開發者ID:joegomes,項目名稱:deepchem,代碼行數:18,代碼來源:lr.py

示例11: add_placeholders

 def add_placeholders(self, graph, name_scopes):
   """Adds all placeholders for this model."""
   # Create placeholders
   placeholder_scope = TensorflowGraph.get_placeholder_scope(
       graph, name_scopes)
   labels, weights = [], []
   n_features = self.n_features
   with placeholder_scope:
     self.mol_features = tf.placeholder(
         tf.float32,
         shape=[None, n_features],
         name='mol_features')
     for task in range(self.n_tasks):
       weights.append(tf.identity(
           tf.placeholder(tf.float32, shape=[None,],
                          name='weights_%d' % task)))
       labels.append(tf.identity(
           tf.placeholder(tf.float32, shape=[None,],
                          name='labels_%d' % task)))
   return self.mol_features, labels, weights
開發者ID:deepchem,項目名稱:deepchem,代碼行數:20,代碼來源:progressive_multitask.py

示例12: add_progressive_lattice

  def add_progressive_lattice(self, graph, name_scopes, training):
    """Constructs the graph architecture as specified in its config.

    This method creates the following Placeholders:
      mol_features: Molecule descriptor (e.g. fingerprint) tensor with shape
        batch_size x n_features.
    """
    n_features = self.n_features
    placeholder_scope = TensorflowGraph.get_placeholder_scope(graph,
                                                              name_scopes)
    with graph.as_default():
      layer_sizes = self.layer_sizes
      weight_init_stddevs = self.weight_init_stddevs
      bias_init_consts = self.bias_init_consts
      dropouts = self.dropouts
      lengths_set = {
          len(layer_sizes),
          len(weight_init_stddevs),
          len(bias_init_consts),
          len(dropouts),
      }
      assert len(lengths_set) == 1, 'All layer params must have same length.'
      n_layers = lengths_set.pop()
      assert n_layers > 0, 'Must have some layers defined.'

      prev_layer = self.mol_features
      prev_layer_size = n_features
      all_layers = {}
      for i in range(n_layers):
        for task in range(self.n_tasks):
          task_scope = TensorflowGraph.shared_name_scope("task%d_ops" % task,
                                                         graph, name_scopes)
          print("Adding weights for task %d, layer %d" % (task, i))
          with task_scope as scope:
            if i == 0:
              prev_layer = self.mol_features
              prev_layer_size = self.n_features
            else:
              prev_layer = all_layers[(i - 1, task)]
              prev_layer_size = layer_sizes[i - 1]
              if task > 0:
                lateral_contrib = self.add_adapter(all_layers, task, i)
            print("Creating W_layer_%d_task%d of shape %s" %
                  (i, task, str([prev_layer_size, layer_sizes[i]])))
            W = tf.Variable(
                tf.truncated_normal(
                    shape=[prev_layer_size, layer_sizes[i]],
                    stddev=self.weight_init_stddevs[i]),
                name='W_layer_%d_task%d' % (i, task),
                dtype=tf.float32)
            print("Creating b_layer_%d_task%d of shape %s" %
                  (i, task, str([layer_sizes[i]])))
            b = tf.Variable(
                tf.constant(
                    value=self.bias_init_consts[i], shape=[layer_sizes[i]]),
                name='b_layer_%d_task%d' % (i, task),
                dtype=tf.float32)
            layer = tf.matmul(prev_layer, W) + b
            if i > 0 and task > 0:
              layer = layer + lateral_contrib
            layer = tf.nn.relu(layer)
            layer = model_ops.dropout(layer, dropouts[i], training)
            all_layers[(i, task)] = layer

      output = []
      for task in range(self.n_tasks):
        prev_layer = all_layers[(i, task)]
        prev_layer_size = layer_sizes[i]
        task_scope = TensorflowGraph.shared_name_scope("task%d" % task, graph,
                                                       name_scopes)
        with task_scope as scope:
          if task > 0:
            lateral_contrib = tf.squeeze(
                self.add_adapter(all_layers, task, i + 1))
          weight_init = tf.truncated_normal(
              shape=[prev_layer_size, 1], stddev=weight_init_stddevs[i])
          bias_init = tf.constant(value=bias_init_consts[i], shape=[1])
          print("Creating W_output_task%d of shape %s" %
                (task, str([prev_layer_size, 1])))
          w = tf.Variable(
              weight_init, name='W_output_task%d' % task, dtype=tf.float32)
          print("Creating b_output_task%d of shape %s" % (task, str([1])))
          b = tf.Variable(
              bias_init, name='b_output_task%d' % task, dtype=tf.float32)
          layer = tf.squeeze(tf.matmul(prev_layer, w) + b)
          if i > 0 and task > 0:
            layer = layer + lateral_contrib
          output.append(layer)

      return output
開發者ID:joegomes,項目名稱:deepchem,代碼行數:90,代碼來源:progressive_multitask.py

示例13: build

  def build(self, graph, name_scopes, training):
    """Constructs the graph architecture as specified in its config.

    This method creates the following Placeholders:
      mol_features: Molecule descriptor (e.g. fingerprint) tensor with shape
        batch_size x num_features.
    """
    num_features = self.n_features
    placeholder_scope = TensorflowGraph.get_placeholder_scope(graph,
                                                              name_scopes)
    with graph.as_default():
      with placeholder_scope:
        mol_features = tf.placeholder(
            tf.float32, shape=[None, num_features], name='mol_features')

      layer_sizes = self.layer_sizes
      weight_init_stddevs = self.weight_init_stddevs
      bias_init_consts = self.bias_init_consts
      dropouts = self.dropouts

      bypass_layer_sizes = self.bypass_layer_sizes
      bypass_weight_init_stddevs = self.bypass_weight_init_stddevs
      bypass_bias_init_consts = self.bypass_bias_init_consts
      bypass_dropouts = self.bypass_dropouts

      lengths_set = {
          len(layer_sizes),
          len(weight_init_stddevs),
          len(bias_init_consts),
          len(dropouts),
      }
      assert len(lengths_set) == 1, "All layer params must have same length."
      num_layers = lengths_set.pop()
      assert num_layers > 0, "Must have some layers defined."

      bypass_lengths_set = {
          len(bypass_layer_sizes),
          len(bypass_weight_init_stddevs),
          len(bypass_bias_init_consts),
          len(bypass_dropouts),
      }
      assert len(bypass_lengths_set) == 1, (
          "All bypass_layer params" + " must have same length.")
      num_bypass_layers = bypass_lengths_set.pop()

      label_placeholders = self.add_label_placeholders(graph, name_scopes)
      weight_placeholders = self.add_example_weight_placeholders(graph,
                                                                 name_scopes)
      if training:
        graph.queue = tf.FIFOQueue(
            capacity=5,
            dtypes=[tf.float32] *
            (len(label_placeholders) + len(weight_placeholders) + 1))
        graph.enqueue = graph.queue.enqueue([mol_features] + label_placeholders
                                            + weight_placeholders)
        queue_outputs = graph.queue.dequeue()
        labels = queue_outputs[1:len(label_placeholders) + 1]
        weights = queue_outputs[len(label_placeholders) + 1:]
        prev_layer = queue_outputs[0]
      else:
        labels = label_placeholders
        weights = weight_placeholders
        prev_layer = mol_features

      top_layer = prev_layer
      prev_layer_size = num_features
      for i in range(num_layers):
        # layer has shape [None, layer_sizes[i]]
        print("Adding weights of shape %s" %
              str([prev_layer_size, layer_sizes[i]]))
        layer = tf.nn.relu(
            model_ops.fully_connected_layer(
                tensor=prev_layer,
                size=layer_sizes[i],
                weight_init=tf.truncated_normal(
                    shape=[prev_layer_size, layer_sizes[i]],
                    stddev=weight_init_stddevs[i]),
                bias_init=tf.constant(
                    value=bias_init_consts[i], shape=[layer_sizes[i]])))
        layer = model_ops.dropout(layer, dropouts[i], training)
        prev_layer = layer
        prev_layer_size = layer_sizes[i]

      output = []
      # top_multitask_layer has shape [None, layer_sizes[-1]]
      top_multitask_layer = prev_layer
      for task in range(self.n_tasks):
        # TODO(rbharath): Might want to make it feasible to have multiple
        # bypass layers.
        # Construct task bypass layer
        prev_bypass_layer = top_layer
        prev_bypass_layer_size = num_features
        for i in range(num_bypass_layers):
          # bypass_layer has shape [None, bypass_layer_sizes[i]]
          print("Adding bypass weights of shape %s" %
                str([prev_bypass_layer_size, bypass_layer_sizes[i]]))
          bypass_layer = tf.nn.relu(
              model_ops.fully_connected_layer(
                  tensor=prev_bypass_layer,
                  size=bypass_layer_sizes[i],
#.........這裏部分代碼省略.........
開發者ID:joegomes,項目名稱:deepchem,代碼行數:101,代碼來源:robust_multitask.py

示例14: build

  def build(self, graph, name_scopes, training):
    """Constructs the graph architecture as specified in its config.

    This method creates the following Placeholders:
      mol_features: Molecule descriptor (e.g. fingerprint) tensor with shape
        batch_size x n_features.
    """
    placeholder_scope = TensorflowGraph.get_placeholder_scope(graph,
                                                              name_scopes)
    n_features = self.n_features
    with graph.as_default():
      with placeholder_scope:
        mol_features = tf.placeholder(
            tf.float32, shape=[None, n_features], name='mol_features')

      layer_sizes = self.layer_sizes
      weight_init_stddevs = self.weight_init_stddevs
      bias_init_consts = self.bias_init_consts
      dropouts = self.dropouts
      lengths_set = {
          len(layer_sizes),
          len(weight_init_stddevs),
          len(bias_init_consts),
          len(dropouts),
      }
      assert len(lengths_set) == 1, 'All layer params must have same length.'
      n_layers = lengths_set.pop()
      assert n_layers > 0, 'Must have some layers defined.'

      label_placeholders = self.add_label_placeholders(graph, name_scopes)
      weight_placeholders = self.add_example_weight_placeholders(graph,
                                                                 name_scopes)
      if training:
        graph.queue = tf.FIFOQueue(
            capacity=5,
            dtypes=[tf.float32] *
            (len(label_placeholders) + len(weight_placeholders) + 1))
        graph.enqueue = graph.queue.enqueue([mol_features] + label_placeholders
                                            + weight_placeholders)
        queue_outputs = graph.queue.dequeue()
        labels = queue_outputs[1:len(label_placeholders) + 1]
        weights = queue_outputs[len(label_placeholders) + 1:]
        prev_layer = queue_outputs[0]
      else:
        labels = label_placeholders
        weights = weight_placeholders
        prev_layer = mol_features

      prev_layer_size = n_features
      for i in range(n_layers):
        layer = tf.nn.relu(
            model_ops.fully_connected_layer(
                tensor=prev_layer,
                size=layer_sizes[i],
                weight_init=tf.truncated_normal(
                    shape=[prev_layer_size, layer_sizes[i]],
                    stddev=weight_init_stddevs[i]),
                bias_init=tf.constant(
                    value=bias_init_consts[i], shape=[layer_sizes[i]])))
        layer = model_ops.dropout(layer, dropouts[i], training)
        prev_layer = layer
        prev_layer_size = layer_sizes[i]

      output = model_ops.multitask_logits(layer, self.n_tasks)
    return (output, labels, weights)
開發者ID:joegomes,項目名稱:deepchem,代碼行數:65,代碼來源:fcnet.py

示例15: build

  def build(self, graph, name_scopes, training):
    """Constructs the graph architecture as specified in its config.

    This method creates the following Placeholders:
      mol_features: Molecule descriptor (e.g. fingerprint) tensor with shape
        batch_size x num_features.
    """
    num_features = self.n_features 
    placeholder_scope = TensorflowGraph.get_placeholder_scope(
        graph, name_scopes)
    with graph.as_default():
      with placeholder_scope:
        self.mol_features = tf.placeholder(
            tf.float32,
            shape=[None, num_features],
            name='mol_features')

      layer_sizes = self.layer_sizes
      weight_init_stddevs = self.weight_init_stddevs
      bias_init_consts = self.bias_init_consts
      dropouts = self.dropouts

      bypass_layer_sizes = self.bypass_layer_sizes
      bypass_weight_init_stddevs = self.bypass_weight_init_stddevs
      bypass_bias_init_consts = self.bypass_bias_init_consts
      bypass_dropouts = self.bypass_dropouts

      lengths_set = {
          len(layer_sizes),
          len(weight_init_stddevs),
          len(bias_init_consts),
          len(dropouts),
          }
      assert len(lengths_set) == 1, "All layer params must have same length."
      num_layers = lengths_set.pop()
      assert num_layers > 0, "Must have some layers defined."

      bypass_lengths_set = {
          len(bypass_layer_sizes),
          len(bypass_weight_init_stddevs),
          len(bypass_bias_init_consts),
          len(bypass_dropouts),
          }
      assert (len(bypass_lengths_set) == 1,
              "All bypass_layer params must have same length.")
      num_bypass_layers = bypass_lengths_set.pop()

      prev_layer = self.mol_features
      prev_layer_size = num_features 
      for i in range(num_layers):
        # layer has shape [None, layer_sizes[i]]
        ########################################################## DEBUG
        print("Adding weights of shape %s" % str([prev_layer_size, layer_sizes[i]]))
        ########################################################## DEBUG
        layer = tf.nn.relu(model_ops.fully_connected_layer(
            tensor=prev_layer,
            size=layer_sizes[i],
            weight_init=tf.truncated_normal(
                shape=[prev_layer_size, layer_sizes[i]],
                stddev=weight_init_stddevs[i]),
            bias_init=tf.constant(value=bias_init_consts[i],
                                  shape=[layer_sizes[i]])))
        layer = model_ops.dropout(layer, dropouts[i], training)
        prev_layer = layer
        prev_layer_size = layer_sizes[i]

      output = []
      # top_multitask_layer has shape [None, layer_sizes[-1]]
      top_multitask_layer = prev_layer
      for task in range(self.n_tasks):
        # TODO(rbharath): Might want to make it feasible to have multiple
        # bypass layers.
        # Construct task bypass layer
        prev_bypass_layer = self.mol_features
        prev_bypass_layer_size = num_features
        for i in range(num_bypass_layers):
          # bypass_layer has shape [None, bypass_layer_sizes[i]]
          ########################################################## DEBUG
          print("Adding bypass weights of shape %s"
                % str([prev_bypass_layer_size, bypass_layer_sizes[i]]))
          ########################################################## DEBUG
          bypass_layer = tf.nn.relu(model_ops.fully_connected_layer(
            tensor = prev_bypass_layer,
            size = bypass_layer_sizes[i],
            weight_init=tf.truncated_normal(
                shape=[prev_bypass_layer_size, bypass_layer_sizes[i]],
                stddev=bypass_weight_init_stddevs[i]),
            bias_init=tf.constant(value=bypass_bias_init_consts[i],
                                  shape=[bypass_layer_sizes[i]])))
    
          bypass_layer = model_ops.dropout(bypass_layer, bypass_dropouts[i])
          prev_bypass_layer = bypass_layer
          prev_bypass_layer_size = bypass_layer_sizes[i]
        top_bypass_layer = prev_bypass_layer

        if num_bypass_layers > 0:
          # task_layer has shape [None, layer_sizes[-1] + bypass_layer_sizes[-1]]
          task_layer = tf.concat(1, [top_multitask_layer, top_bypass_layer])
          task_layer_size = layer_sizes[-1] + bypass_layer_sizes[-1]
        else:
#.........這裏部分代碼省略.........
開發者ID:apappu97,項目名稱:deepchem,代碼行數:101,代碼來源:robust_multitask.py


注:本文中的deepchem.models.tensorflow_models.TensorflowGraph類示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。