當前位置: 首頁>>代碼示例>>Python>>正文


Python TensorGraph._get_tf方法代碼示例

本文整理匯總了Python中deepchem.models.TensorGraph._get_tf方法的典型用法代碼示例。如果您正苦於以下問題:Python TensorGraph._get_tf方法的具體用法?Python TensorGraph._get_tf怎麽用?Python TensorGraph._get_tf使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在deepchem.models.TensorGraph的用法示例。


在下文中一共展示了TensorGraph._get_tf方法的2個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _build_graph

# 需要導入模塊: from deepchem.models import TensorGraph [as 別名]
# 或者: from deepchem.models.TensorGraph import _get_tf [as 別名]
 def _build_graph(self, tf_graph, scope, model_dir):
   """Construct a TensorGraph containing the policy and loss calculations."""
   state_shape = self._env.state_shape
   state_dtype = self._env.state_dtype
   if not self._state_is_list:
     state_shape = [state_shape]
     state_dtype = [state_dtype]
   features = []
   for s, d in zip(state_shape, state_dtype):
     features.append(Feature(shape=[None] + list(s), dtype=tf.as_dtype(d)))
   policy_layers = self._policy.create_layers(features)
   action_prob = policy_layers['action_prob']
   value = policy_layers['value']
   search_prob = Label(shape=(None, self._env.n_actions))
   search_value = Label(shape=(None,))
   loss = MCTSLoss(
       self.value_weight,
       in_layers=[action_prob, value, search_prob, search_value])
   graph = TensorGraph(
       batch_size=self.max_search_depth,
       use_queue=False,
       graph=tf_graph,
       model_dir=model_dir)
   for f in features:
     graph._add_layer(f)
   graph.add_output(action_prob)
   graph.add_output(value)
   graph.set_loss(loss)
   graph.set_optimizer(self._optimizer)
   with graph._get_tf("Graph").as_default():
     with tf.variable_scope(scope):
       graph.build()
   if len(graph.rnn_initial_states) > 0:
     raise ValueError('MCTS does not support policies with recurrent layers')
   return graph, features, action_prob, value, search_prob, search_value
開發者ID:AhlamMD,項目名稱:deepchem,代碼行數:37,代碼來源:mcts.py

示例2: _build_graph

# 需要導入模塊: from deepchem.models import TensorGraph [as 別名]
# 或者: from deepchem.models.TensorGraph import _get_tf [as 別名]
 def _build_graph(self, tf_graph, scope, model_dir):
   """Construct a TensorGraph containing the policy and loss calculations."""
   state_shape = self._env.state_shape
   state_dtype = self._env.state_dtype
   if not self._state_is_list:
     state_shape = [state_shape]
     state_dtype = [state_dtype]
   features = []
   for s, d in zip(state_shape, state_dtype):
     features.append(Feature(shape=[None] + list(s), dtype=tf.as_dtype(d)))
   policy_layers = self._policy.create_layers(features)
   value = policy_layers['value']
   rewards = Weights(shape=(None,))
   advantages = Weights(shape=(None,))
   graph = TensorGraph(
       batch_size=self.max_rollout_length,
       use_queue=False,
       graph=tf_graph,
       model_dir=model_dir)
   for f in features:
     graph._add_layer(f)
   if 'action_prob' in policy_layers:
     self.continuous = False
     action_prob = policy_layers['action_prob']
     actions = Label(shape=(None, self._env.n_actions))
     loss = A3CLossDiscrete(
         self.value_weight,
         self.entropy_weight,
         in_layers=[rewards, actions, action_prob, value, advantages])
     graph.add_output(action_prob)
   else:
     self.continuous = True
     action_mean = policy_layers['action_mean']
     action_std = policy_layers['action_std']
     actions = Label(shape=[None] + list(self._env.action_shape))
     loss = A3CLossContinuous(
         self.value_weight,
         self.entropy_weight,
         in_layers=[
             rewards, actions, action_mean, action_std, value, advantages
         ])
     graph.add_output(action_mean)
     graph.add_output(action_std)
   graph.add_output(value)
   graph.set_loss(loss)
   graph.set_optimizer(self._optimizer)
   with graph._get_tf("Graph").as_default():
     with tf.variable_scope(scope):
       graph.build()
   if self.continuous:
     return graph, features, rewards, actions, action_mean, action_std, value, advantages
   else:
     return graph, features, rewards, actions, action_prob, value, advantages
開發者ID:ktaneishi,項目名稱:deepchem,代碼行數:55,代碼來源:a3c.py


注:本文中的deepchem.models.TensorGraph._get_tf方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。