本文整理匯總了Python中dd.bdd.BDD.find_or_add方法的典型用法代碼示例。如果您正苦於以下問題:Python BDD.find_or_add方法的具體用法?Python BDD.find_or_add怎麽用?Python BDD.find_or_add使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類dd.bdd.BDD
的用法示例。
在下文中一共展示了BDD.find_or_add方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_top_cofactor
# 需要導入模塊: from dd.bdd import BDD [as 別名]
# 或者: from dd.bdd.BDD import find_or_add [as 別名]
def test_top_cofactor():
ordering = {'x': 0, 'y': 1}
g = BDD(ordering)
x = ordering['x']
y = ordering['y']
u = g.find_or_add(y, -1, 1)
assert g._top_cofactor(u, x) == (u, u)
assert g._top_cofactor(u, y) == (-1, 1)
u = g.find_or_add(x, -1, 1)
assert g._top_cofactor(u, x) == (-1, 1)
assert g._top_cofactor(-u, x) == (1, -1)
示例2: test_compose
# 需要導入模塊: from dd.bdd import BDD [as 別名]
# 或者: from dd.bdd.BDD import find_or_add [as 別名]
def test_compose():
ordering = {'x': 0, 'y': 1, 'z': 2}
g = BDD(ordering)
# x & (x | z)
a = g.add_expr('x && y')
b = g.add_expr('x || z')
c = g.compose(a, 'y', b)
d = g.add_expr('x && (x || z)')
assert c == d, (c, d)
# (y | z) & x
ordering = {'x': 0, 'y': 1, 'z': 2, 'w': 3}
g = BDD(ordering)
a = g.add_expr('(x && y) || z')
b = g.add_expr('(y || z) && x')
c = g.compose(a, 'z', b)
assert c == b, (c, b)
# long expr
ordering = {'x': 0, 'y': 1, 'z': 2, 'w': 3}
g = BDD(ordering)
a = g.add_expr('(x && y) || (!z || (w && y && x))')
b = g.add_expr('(y || z) && x')
c = g.compose(a, 'y', b)
d = g.add_expr(
'(x && ((y || z) && x)) ||'
' (!z || (w && ((y || z) && x) && x))')
assert c == d, (c, d)
# complemented edges
ordering = {'x': 0, 'y': 1}
g = BDD(ordering)
f = g.add_expr('x <-> y')
var = 'y'
new_level = 0
var_node = g.find_or_add(new_level, -1, 1)
u = g.compose(f, var, var_node)
assert u == 1, g.to_expr(u)
示例3: test_ite
# 需要導入模塊: from dd.bdd import BDD [as 別名]
# 或者: from dd.bdd.BDD import find_or_add [as 別名]
def test_ite():
ordering = {'x': 0, 'y': 1}
g = BDD(ordering)
# x
ix = ordering['x']
x = g.find_or_add(ix, -1, 1)
h = ref_var(ix)
compare(x, g, h)
# y
iy = ordering['y']
y = g.find_or_add(iy, -1, 1)
h = ref_var(iy)
compare(y, g, h)
# x and y
u = g.ite(x, y, -1)
h = ref_x_and_y()
compare(u, g, h)
# x or y
u = g.ite(x, 1, y)
h = ref_x_or_y()
compare(u, g, h)
# negation
assert g.ite(x, -1, 1) == -x, g._succ
assert g.ite(-x, -1, 1) == x, g._succ
示例4: load
# 需要導入模塊: from dd.bdd import BDD [as 別名]
# 或者: from dd.bdd.BDD import find_or_add [as 別名]
def load(fname):
"""Return a `BDD` loaded from DDDMP file `fname`.
If no `.orderedvarnames` appear in the file,
then `.suppvarnames` and `.permids` are used instead.
In the second case, the variable levels contains blanks.
To avoid blanks, the levels are re-indexed here.
This has no effect if `.orderedvarnames` appears in the file.
DDDMP files are dumped by [CUDD](http://vlsi.colorado.edu/~fabio/CUDD/).
"""
parser = Parser()
bdd_succ, n_vars, ordering, roots = parser.parse(fname)
# reindex to ensure no blanks
perm = {k: var for var, k in ordering.iteritems()}
perm = {i: perm[k] for i, k in enumerate(sorted(perm))}
new_ordering = {var: k for k, var in perm.iteritems()}
old2new = {ordering[var]: new_ordering[var] for var in ordering}
# convert
bdd = BDD(new_ordering)
umap = {-1: -1, 1: 1}
for j in xrange(len(new_ordering) - 1, -1, -1):
for u, (k, v, w) in bdd_succ.iteritems():
# terminal ?
if v is None:
assert w is None, w
continue
# non-terminal
i = old2new[k]
if i != j:
continue
p, q = umap[abs(v)], umap[w]
if v < 0:
p = -p
r = bdd.find_or_add(i, p, q)
umap[abs(u)] = r
bdd.roots.update(roots)
return bdd
示例5: test_find_or_add
# 需要導入模塊: from dd.bdd import BDD [as 別名]
# 或者: from dd.bdd.BDD import find_or_add [as 別名]
def test_find_or_add():
ordering = {'x': 0, 'y': 1}
g = BDD(ordering)
# init
n = len(g)
m = g._min_free
assert n == 1, n
assert m == 2, m
# elimination rule
i = 0
v = -1
w = 1
n = len(g)
u = g.find_or_add(i, v, v)
n_ = len(g)
assert n == n_, (n, n_)
assert u == v, (u, v)
assert not g._pred, g._pred
# unchanged min_free
v = 1
m = g._min_free
g.find_or_add(i, v, v)
m_ = g._min_free
assert m_ == m, (m_, m)
# add new node
g = BDD(ordering)
v = -1
w = 1
n = len(g)
m = g._min_free
assert n == 1, n
u = g.find_or_add(i, v, w)
n_ = len(g)
m_ = g._min_free
assert u != v, (u, v)
assert n_ == n + 1, (n, n_)
assert m_ == m + 1, (m, m_)
assert g._succ[u] == (i, -1, 1)
assert (i, v, w) in g._pred
assert abs(u) in g._ref
assert g._ref[abs(u)] == 0
assert g._ref[abs(v)] == 2, g._ref
# independent increase of reference counters
v = u
w = w
refv = g._ref[abs(v)]
refw = g._ref[w]
u = g.find_or_add(i, v, w)
refv_ = g._ref[abs(v)]
refw_ = g._ref[w]
assert refv + 1 == refv_, (refv, refv_)
assert refw + 1 == refw_, (refw, refw_)
# add existing
n = len(g)
m = g._min_free
refv = g._ref[abs(v)]
refw = g._ref[w]
r = g.find_or_add(i, v, w)
n_ = len(g)
m_ = g._min_free
refv_ = g._ref[abs(v)]
refw_ = g._ref[w]
assert n == n_, (n, n_)
assert m == m_, (m, m_)
assert u == r, u
assert refv == refv_, (refv, refv_)
assert refw == refw_, (refw, refw_)
# only non-terminals can be added
with nt.assert_raises(AssertionError):
g.find_or_add(2, -1, 1)
# low and high must already exist
with nt.assert_raises(AssertionError):
g.find_or_add(0, 3, 4)
# canonicity of complemented edges
# v < 0, w > 0
g = BDD(ordering)
i = 0
v = -1
w = 1
u = g.find_or_add(i, v, w)
assert u > 0, u
# v > 0, w < 0
v = 1
w = -1
u = g.find_or_add(i, v, w)
assert u < 0, u
assert abs(u) in g._succ, u
_, v, w = g._succ[abs(u)]
assert v < 0, v
assert w > 0, w
# v < 0, w < 0
v = -1
w = -2
u = g.find_or_add(i, v, w)
assert u < 0, u
_, v, w = g._succ[abs(u)]
assert v > 0, v
assert w > 0, w