本文整理匯總了Python中dbconnect.DBConnect.getInstance方法的典型用法代碼示例。如果您正苦於以下問題:Python DBConnect.getInstance方法的具體用法?Python DBConnect.getInstance怎麽用?Python DBConnect.getInstance使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類dbconnect.DBConnect
的用法示例。
在下文中一共展示了DBConnect.getInstance方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: get_tables
# 需要導入模塊: from dbconnect import DBConnect [as 別名]
# 或者: from dbconnect.DBConnect import getInstance [as 別名]
def get_tables(self):
'''returns all tables required in the from clause for this query.
'''
tables = self.get_queried_tables()
# add the tables required to link the above tables together
db = DBConnect.getInstance()
exps = db.get_linking_expressions(tables)
for exp in exps:
tables += exp.get_tables()
return list(set(tables))
示例2: __init__
# 需要導入模塊: from dbconnect import DBConnect [as 別名]
# 或者: from dbconnect.DBConnect import getInstance [as 別名]
def __init__(self, parent, properties = None, show_controls = True, size=(600, 600), loadData = True, **kwargs):
wx.Frame.__init__(self, parent, -1, size=size, title='Dimensionality Reduction Plot', **kwargs)
self.SetName('Plot main')
if properties is not None:
global p
p = properties
if not p.is_initialized():
logging.critical('Classifier requires a properties file. Exiting.')
raise Exception('Classifier requires a properties file. Exiting.')
global db
db = DBConnect.getInstance()
global classifier
classifier = parent
if loadData:
# Define a progress dialog
dlg = wx.ProgressDialog('Fetching cell data...', '0% Complete', 100, classifier,
wx.PD_ELAPSED_TIME | wx.PD_ESTIMATED_TIME |
wx.PD_REMAINING_TIME | wx.PD_CAN_ABORT)
def cb(frac):
cont, skip = dlg.Update(int(frac * 100.), '%d%% Complete'%(frac * 100.))
if not cont: # cancel was pressed
dlg.Destroy()
raise StopCalculating()
# Load the data for each object
try:
self.data, self.data_dic = self.load_obj_measurements(cb)
except StopCalculating:
self.PostMessage('User canceled updating training set.')
return
dlg.Destroy()
else:
self.data, self.data_dic = None, None
self.features_dic = self.load_feature_names()
self.class_masks = None
self.class_names = None
self.object_opacity = None
figpanel = PlotNotebook(self)
self.figure_scores = figpanel.add('Scores')
self.figure_loadings = figpanel.add('Loadings')
self.update_figures()
sizer = wx.BoxSizer(wx.VERTICAL)
sizer.Add(figpanel, 1, wx.EXPAND)
configpanel = PlotControl(self, self.figure_scores, self.figure_loadings)
sizer.Add(configpanel, 0, wx.EXPAND | wx.ALL, 5)
self.SetSizer(sizer)
self.Centre()
示例3: extractDataFromGroupsMysql
# 需要導入模塊: from dbconnect import DBConnect [as 別名]
# 或者: from dbconnect.DBConnect import getInstance [as 別名]
def extractDataFromGroupsMysql(self, dependentDataValues, independentDataValues):
from properties import Properties
from dbconnect import (
DBConnect,
UniqueImageClause,
UniqueObjectClause,
GetWhereClauseForImages,
GetWhereClauseForObjects,
image_key_columns,
object_key_columns,
)
import sqltools as sql
p = Properties.getInstance()
p.LoadFile("C:\\Users\\Dalitso\\Desktop\\workspace2\\abhakar\\Properties_README.txt")
db = DBConnect.getInstance()
def buildquery(self, theGroup, var):
pairs = theGroup.pairsDict
if var == "dep":
for i in pairs.keys():
print i
q = "SELECT " + "`" + self.dependentVariable + "`" + "FROM " + self.table + " WHERE "
q2 = [i + " LIKE `" + pairs[i] + "` AND " for i in pairs.keys()]
result = q + "".join(q2)[:-4]
print result
if var == "ind":
for i in pairs.keys():
print i
q = "SELECT " + "`" + self.independentVariable + "`" + "FROM " + self.table + "WHERE"
q2 = [i + "`" + " LIKE `" + pairs[i] + "` AND " for i in pairs.keys()]
result = q + "".join(q2)[:-4]
print result
return result
import numpy as np
dataDict = {}
dependentDataValues = np.array(dependentDataValues)
independentDataValues = np.array(independentDataValues)
tmp = {}
for iGrp in self.groupDefinitions:
theGroup = iGrp
theGroup.checkMatchCount
tmp["dependentData"] = db.execute(buildquery(self, theGroup, "dep"))
tmp["independentData"] = db.execute(buildquery(self, theGroup, "ind"))
# tmp['pairs'] = theGroup.pairsDict[theGroup.description]
dataDict[theGroup.description] = tmp
# print iGrp,theGroup.description,tmp
return dataDict
示例4: get_where_clause
# 需要導入模塊: from dbconnect import DBConnect [as 別名]
# 或者: from dbconnect.DBConnect import getInstance [as 別名]
def get_where_clause(self):
'''Build the where clause from conditions given by the user and
conditions that link all the tables together.
'''
db = DBConnect.getInstance()
conditions = []
conditions += ['(%s)'%(str(f)) for f in self.filters]
queried_tables = self.get_queried_tables()
if len(queried_tables) > 1:
link_exps = db.get_linking_expressions(queried_tables)
if link_exps:
conditions += [str(exp) for exp in link_exps]
if self.old_filters:
conditions += ['%s.%s = subquery_%d.%s'%(p.image_table, col, i, col)
for i in range(len(self.old_filters))
for col in image_key_columns()]
if self.wheres:
conditions += [str(where) for where in self.wheres]
return ' AND '.join(conditions)
示例5: PlateViewer
# 需要導入模塊: from dbconnect import DBConnect [as 別名]
# 或者: from dbconnect.DBConnect import getInstance [as 別名]
import properties
import logging
import matplotlib.cm
import numpy as np
from itertools import groupby
import os
import sys
import re
import wx
import cpa.helpmenu
import csv
p = properties.Properties.getInstance()
# Hack the properties module so it doesn't require the object table.
properties.optional_vars += ['object_table']
db = DBConnect.getInstance()
required_fields = ['plate_shape', 'well_id']
fixed_width = (200,-1)
class PlateViewer(wx.Frame, CPATool):
def __init__(self, parent, size=(800,-1), **kwargs):
wx.Frame.__init__(self, parent, -1, size=size, title='Plate Viewer', **kwargs)
CPATool.__init__(self)
self.SetName(self.tool_name)
self.SetBackgroundColour("white") # Fixing the color
# Check for required properties fields.
fail = False
for field in required_fields:
示例6: HTS_GroupDataExtractMySql
# 需要導入模塊: from dbconnect import DBConnect [as 別名]
# 或者: from dbconnect.DBConnect import getInstance [as 別名]
def HTS_GroupDataExtractMySql(dataSelector,table):
from HTS_dataDict import HTS_dataDict
import xlrd as xl
import numpy as np
import matplotlib.pyplot as plt
from properties import Properties
from dbconnect import DBConnect, UniqueImageClause, UniqueObjectClause, GetWhereClauseForImages, GetWhereClauseForObjects, image_key_columns, object_key_columns
import sqltools as sql
p = Properties.getInstance()
db = DBConnect.getInstance()
dependentDataValues = False
independentDataValues = False
# def buildquery(self, table):
# q = 'SELECT ' + self.independentVar + ', '+ self.dependentVar +' FROM ' + table
# q2= [' WHERE '+ y[1] +' LIKE ' +y[0] for y in group.pairs]
# return q + ''.join(q2)
returnDict = HTS_dataDict(dataSelector)
#for iFile in range(nFiles):
dataSelector.clearAllIndici
print('HTS_GroupDataExtract: using sheet %s for %s\n',table)
query ='SELECT `' + dataSelector.independentVariable + '` FROM ' + '`' +table+'`'
print query
dataSelector.findValidIndiciFromDataColumn(dataSelector.independentVariable,db.execute(query))
query = 'SELECT `' + dataSelector.dependentVariable + '` FROM ' + '`' +table+'`'
print query
dataSelector.findValidIndiciFromDataColumn(dataSelector.dependentVariable,db.execute(query))
print dependentDataValues, independentDataValues, "variables"
if not dependentDataValues:
print 'HTS_GroupDataExtract: dependent variable not found in %s',
if not independentDataValues:
print 'HTS_GroupDataExtract: independent variable not found in %s'
# print dataSelector.extractDataFromGroups(dependentDataValues,independentDataValues)
dataSelector.table = table
returnDict.dict[table] = dataSelector.extractDataFromGroupsMysql(dependentDataValues,independentDataValues)
# if nFiles > 1:
# # Get data from the selector
# nGroups = dataSelector.nGroups
# groupKeys = dataSelector.getGroupDescriptions()
# # Create the combined group
# combinedData = {}
# tmpStruct = {}
# tmpStruct['dependentData'] = np.array([])
# tmpStruct['independentData'] = np.array([])
# for iGrp in range(nGroups):
# combinedData[groupKeys[iGrp]] = tmpStruct
# for iFile in range(nFiles):
# #print('the key = %s\n')
# fileData = returnDict.dict[dataFiles[iFile]]
# for iGrp in range(nGroups):
# grpKey = groupKeys[iGrp]
# #combDepData = combinedData[grpKey]['dependentData']
# fileDepData = fileData[grpKey]['dependentData']
# tmpStruct['dependentData'] = np.concatenate((tmpStruct['dependentData'],fileDepData[:]))
# #combIndData = [combinedData[grpKey]['independentData']]
# fileIndData = fileData[grpKey]['independentData']
# tmpStruct['independentData'] = np.concatenate((tmpStruct['independentData'],fileIndData[:]))
# combinedData[grpKey] = tmpStruct
#
# returnDict.dict['combinedData'] = combinedData
return returnDict
示例7: make_unique_plot_name
# 需要導入模塊: from dbconnect import DBConnect [as 別名]
# 或者: from dbconnect.DBConnect import getInstance [as 別名]
f.write('\n')
f.close()
def make_unique_plot_name(self, prefix):
'''This function must be called to generate a unique name for each plot.
eg: plot.SetName(wx.GetApp().make_unique_plot_name('Histogram'))
'''
plot_num = max([int(plot.Name[len(prefix):])
for plot in self.plots if plot.Name.startswith(prefix)])
return '%s %d'%(prefix, plot_num)
if __name__ == "__main__":
# Initialize the app early because the fancy exception handler
# depends on it in order to show a dialog.
app = CPAnalyst(redirect=False)
if sys.platform=='darwin':
import bioformats
# Install our own pretty exception handler unless one has already
# been installed (e.g., a debugger)
if sys.excepthook == sys.__excepthook__:
from errors import show_exception_as_dialog
sys.excepthook = show_exception_as_dialog
# Black magic: Bus errors occur on certain Macs if we wait until
# later to connect, so we'll do it here.
DBConnect.getInstance().connect()
app.MainLoop()
os._exit(0)