本文整理匯總了Python中db.DB.getRevision方法的典型用法代碼示例。如果您正苦於以下問題:Python DB.getRevision方法的具體用法?Python DB.getRevision怎麽用?Python DB.getRevision使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類db.DB
的用法示例。
在下文中一共展示了DB.getRevision方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: load
# 需要導入模塊: from db import DB [as 別名]
# 或者: from db.DB import getRevision [as 別名]
def load(self, best=False):
print 'Model.load()'
name = '%s_%s'%(self.project.id, self.project.type)
prefix = 'best' if best else 'latest'
if self.offline:
name = '%s_offline'%(name)
elif best:
revision = DB.getRevision( self.id )
prefix = '%s_%d'%(prefix, revision)
# construct the path to the network and weights
path = '%s/%s_%s'%(Paths.Models, prefix, name)
j_path = '%s.json'%(path)
w_path = '%s_weights.h5'%(path)
j_path = j_path.lower()
w_path = w_path.lower()
if not os.path.exists( j_path ) or not os.path.exists( w_path ):
return False
print 'loading model...'
self.model = model_from_json(open( j_path ).read())
self.model.load_weights( w_path )
return True
示例2: get_path
# 需要導入模塊: from db import DB [as 別名]
# 或者: from db.DB import getRevision [as 別名]
def get_path(self):
if self.offline:
return self.path
rev = DB.getRevision( self.id )
path = '%s/%s.%s.%d'%(Paths.Models, self.id, self.type, rev )
return path.lower()
示例3: save
# 需要導入模塊: from db import DB [as 別名]
# 或者: from db.DB import getRevision [as 別名]
def save(self, best=False):
print 'Model.save()'
if self.model == None:
return False
name = '%s_%s'%(self.project.id, self.project.type)
prefix = 'best' if best else 'latest'
revision = 0
if self.offline:
name = '%s_offline'%(name)
elif best:
revision = DB.getRevision( self.id )
revision = (revision+1)%10
prefix = '%s_%d'%(prefix, revision)
# construct the path to the network and weights
path = '%s/%s_%s'%(Paths.Models, prefix, name)
j_path = '%s.json'%(path)
w_path = '%s_weights.h5'%(path)
j_path = j_path.lower()
w_path = w_path.lower()
print 'saving model...'
json_string = self.model.to_json()
open(j_path, 'w').write(json_string)
self.model.save_weights(w_path, overwrite=True)
if not self.offline:
DB.finishSaveModel( self.project.id, revision )
return True
示例4: save_t
# 需要導入模塊: from db import DB [as 別名]
# 或者: from db.DB import getRevision [as 別名]
def save_t(self, version):
revision = DB.getRevision( self.id )
path = '%s/best_%s.%s.%d.%s.pkl'%(Paths.Models, self.id, self.type, revision, version)
print 'saving - ', path
with open(path, 'wb') as file:
cPickle.dump((self.convLayers,
self.mlp.hiddenLayers,
self.mlp.logRegressionLayer,
self.nkerns,
self.kernelSizes,
self.batchSize,
self.patchSize,
self.hiddenSizes),
file)
示例5: test_perf
# 需要導入模塊: from db import DB [as 別名]
# 或者: from db.DB import getRevision [as 別名]
def test_perf(self, project):
name = 'train-input_0037.tif'
path = '%s/%s'%(Paths.TrainGrayscale, name)
image = mahotas.imread( path )
image = Utility.normalizeImage( image )
results = self.model.predict( image=image, mean=project.mean, std=project.std, threshold=project.threshold)
n_membrane = len(results[ results == 1 ])
print 'n_membrane:', n_membrane
if n_membrane > 300000:
rev = DB.getRevision( self.model.id )
version = '%d_%d'%(self.version, n_membrane)
self.model.save_t( version )
self.version += 1
示例6: __init__
# 需要導入模塊: from db import DB [as 別名]
# 或者: from db.DB import getRevision [as 別名]
def __init__(
self,
rng,
input,
n_in=None,
n_hidden=None,
n_out=2,
path=None,
id=None,
offline=False,
batch_size=None,
patch_size=None,
train_time=5.0,
learning_rate=0.1,
momentum=0.9,
activation=rectified_linear):
self.n_out = n_out
self.n_in = n_in
self.n_hidden = n_hidden
self.input = input
self.x = input
self.id = id
self.type = 'MLP'
self.offline = offline
self.rng = rng
self.done = False
self.path = path
self.activation = activation
self.hiddenSizes = n_hidden
self.batchSize = batch_size
self.patchSize = patch_size
self.hiddenSizes = n_hidden
self.learning_rate = learning_rate
self.momentum = momentum
self.trainTime = train_time
self.resample = False
self.best_validation_loss = numpy.inf
self.best_train_error = np.inf
self.revision = DB.getRevision( self.id )
self.initialize()
示例7: get_paths
# 需要導入模塊: from db import DB [as 別名]
# 或者: from db.DB import getRevision [as 別名]
def get_paths(self, forSaving=False, forBest=False):
name = '%s_%s'%(self.project.id, self.project.type)
prefix = 'best' if forBest else 'latest'
posfix = ''
revision = 0
if not self.offline:
revision = DB.getRevision( self.project.id )
revision = (revision+1)%10
posfix = '_%d'%(revision) if forBest else ''
else:
name = '%s_offline'%(name)
# construct the path to the network and weights
path = '%s/%s_%s%s'%(Paths.Models, prefix, name, posfix)
j_path = '%s.json'%(path)
w_path = '%s_weights.h5'%(path)
return j_path.lower(), w_path.lower(), revision
示例8: save
# 需要導入模塊: from db import DB [as 別名]
# 或者: from db.DB import getRevision [as 別名]
def save(self):
path = self.path
revision = 0
if not self.offline:
revision = DB.getRevision( self.id )
revision = (revision+1)%10
path = '%s/best_%s.%s.%d.pkl'%(Paths.Models, self.id, self.type, revision)
path = path.lower()
print 'saving...', path
with open(path, 'wb') as file:
cPickle.dump((
self.hiddenLayers,
self.logRegressionLayer,
self.n_in,
self.n_hidden), file)
if not self.offline:
DB.finishSaveModel( self.id, revision )
示例9: save_best
# 需要導入模塊: from db import DB [as 別名]
# 或者: from db.DB import getRevision [as 別名]
def save_best(self):
print 'Unet.save'
path = Utility.get_dir(self.path)
revision = 0
if not self.offline:
revision = DB.getRevision( self.id )
revision = (revision+1)%10
path = '%s/%s_%s_%d'%(Paths.Models, self.id, self.type, revision)
path = path.lower()
j_path = '%s_best.json'%(path)
w_path = '%s_best_weights.h5'%(path)
j_path = j_path.lower()
w_path = w_path.lower()
print 'saving...', path
# saving code here...
json_string = self.model.to_json()
open(j_path, 'w').write(json_string)
self.model.save_weights(w_path, overwrite=True)
if not self.offline:
DB.finishSaveModel( self.id, revision )
示例10: work
# 需要導入模塊: from db import DB [as 別名]
# 或者: from db.DB import getRevision [as 別名]
def work(self, project):
if not self.online:
self.work_offline(project)
self.done = True
return
start_time = time.clock()
if project is None:
return
print 'prediction.... running', len(self.high)
if len(self.high) == 0:
self.high = DB.getPredictionImages( project.id, 1)
#FG - march 4th 2016
#if len(self.low) == 0:
# self.low = DB.getPredictionImages( project.id, 0 )
'''
for img in self.high:
print 'hid:', img.id, img.modelModifiedTime, img.segmentationTime
print '----'
for img in self.low:
print 'lid:', img.id, img.modelModifiedTime, img.segmentationTime
exit(1)
'''
task = None
if (self.priority == 0 or len(self.low) == 0) and len(self.high) > 0:
self.priority = 1
task = self.high[0]
del self.high[0]
elif len(self.low) > 0:
self.priority = 0
task = self.low[0]
del self.low[0]
if task == None:
return
has_new_model = (self.modTime != project.modelTime)
revision = DB.getRevision( project.id )
print 'revision:', revision
#has_new_model = (revision != self.revision or has_new_model)
# reload the model if it changed
if has_new_model:
#self.revision = revision
print 'initializing...'
self.model.initialize()
self.modTime = project.modelTime
# read image to segment
basepath = Paths.TrainGrayscale if task.purpose == 0 else Paths.ValidGrayscale
path = '%s/%s.tif'%(basepath, task.id)
#success, image = Utility.get_image_padded(path, project.patchSize ) #model.get_patch_size())
print 'segment - path:', path
print 'priority - ', task.segmentationPriority
# perform segmentation
Utility.report_status('segmenting %s'%(task.id),'')
#probs = self.model.predict( path )
#probs = self.model.classify( image )
# serialize to file
segPath = '%s/%s.%s.seg'%(Paths.Segmentation, task.id, project.id)
#self.save_probs( probs, project.id, task.id )
self.classify_n_save( path, segPath, project )
end_time = time.clock()
duration = (end_time - start_time)
DB.finishPrediction( self.projectId, task.id, duration, self.modTime )