本文整理匯總了Python中datamodel.DataModel類的典型用法代碼示例。如果您正苦於以下問題:Python DataModel類的具體用法?Python DataModel怎麽用?Python DataModel使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
在下文中一共展示了DataModel類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_data_size_vs_diff
def test_data_size_vs_diff(dm, given_dict, infer_dict):
#Read all data from data model
dm.read_data(normalize_data=False)
#attr_list = [U_UNIVERSITY_CODE, PROGRAM_CODE, UNIVERSITY, MAJOR_CODE, TERM]
attr_list = [U_UNIVERSITY_CODE, PROGRAM_CODE, UNIVERSITY]
#attr_list = [MAJOR_CODE, PROGRAM_CODE, TERM]
#Size of data
data_size = len(dm.data)
#Step size = 10 steps
step_size = data_size//10
#Get experiment data in a dict
size = []
accuracy = []
for i in xrange(step_size, data_size, step_size):
dm_test = DataModel("")
dm_test.set_data(dm.data[:i])
exp_test = Experimenter(dm_test, attr_list)
actual = exp_test.get_actual_result(given_dict, infer_dict)
estimation = exp_test.generic_get_estimated_result(given_dict, infer_dict)
size.append(i)
accuracy.append(abs(estimation - actual))
print("Step:%d--->Actual:%f--->Estimate:%f" %(i, actual, estimation))
print "-------------------------------------------------------------"
plt.figure()
plt.plot(size, accuracy)
plt.title("Data Size vs Accuracy")
plt.show()
示例2: main
def main(args):
dm = DataModel(args.gig_file, args.chat_file)
dm.read_data()
exp = Experimenter(dm)
if args.classify is True:
scores = exp.classify_gigs()
if args.feature_values is True:
scores = exp.evaluate_feature_values()
return dm
示例3: main
def main(argv):
train_count = -1
if(len(argv)>0):
train_count = int(argv[0])
dm = DataModel()
dm.get_data(train_count)
# (training, feature_names) = get_rich_featured_training(dm,lines)
print(len(dm.data.keys()))
print(len(dm.train))
print(len(dm.test))
示例4: perform_datasize_vs_efficiency
def perform_datasize_vs_efficiency(self, given_dict, infer_dict, max_datasize=None, steps=10):
sizes, est_times, acc_times = [], [], []
if max_datasize is None:
max_datasize = len(self.dm.data)
data_step = max_datasize / steps
for i in range(steps):
cur_datasize = (i+1) * data_step
data = self.dm.data
while len(data) < cur_datasize:
data.extend(self.dm.data)
cur_data = data[:cur_datasize]
cur_dm = DataModel("")
cur_dm.set_data(cur_data)
cur_exp = Experimenter(cur_dm, self.attr_list)
(cur_est, cur_acc) = cur_exp.time_n_queries(given_dict, infer_dict)
sizes.append(cur_datasize)
est_times.append(float(sum(cur_est))/len(cur_est))
acc_times.append(float(sum(cur_acc))/len(cur_acc))
return (sizes, est_times, acc_times)
示例5: export
def export(items, tempdir):
"""Export a list of items
Arguments
items -- list of items to export
tempdir -- directory to use for the export operation
"""
initdir = spm.spmanager.getFirstPath([spm.ExportFolder,
spm.ImportFolder,
spm.MostRecentFolder])
filenamepath = tkFileDialog.asksaveasfilename(initialdir = initdir,
filetypes = ff.dlgExportFormats,
defaultextension = ff.dlgDefaultExportExt)
if(len(filenamepath) < 1):
return
spm.spmanager.setPath(spm.ExportFolder, os.path.dirname(filenamepath))
#Create export dir and datamodel
dmdir = os.path.join(tempdir, _exportdir)
if(os.path.exists(dmdir)):
shutil.rmtree(dmdir)
os.makedirs(dmdir)
dm = DataModel(dmdir)
#Add all slideshows
for item in items:
if(not dm.addSlideshow(item, True)):
showerror(lang[lng.txtExportError], lang[lng.txtCouldNotExport] + item.title)
shutil.rmtree(dmdir)
return
#Save and zip
dm.saveToFile()
pack(dmdir, filenamepath)
shutil.rmtree(dmdir)
示例6: main
def main(args):
dm = DataModel(args.data_file)
dm.read_data(to_read_count=10000)
exp = Experimenter(dm, \
process_datamodel=True, \
serialise=False)
t1 = time.time()
exp.perform_multiclass_experiment(
pred_mode=INDEPENDENT,
use_exclusion=True,
need_to_extract_features=True,
prediction_file='../results/predictions_multiclass_independent_englishonly_legibleonly_wordunibigram_chartrigram_10000.csv',
result_file='../results/results_multiclass_independent_englishonly_legibleonly_wordunibigram_chartrigram_10000.txt',
english_only=True,
legible_only=True)
t2 = time.time()
timeused = t2 - t1
logging.getLogger(LOGGER).info('Time used in experiment (hour:min:sec): %d:%d:%d' % \
(timeused/3600, timeused/60, timeused%60))
return exp
示例7: OnOpenImage
def OnOpenImage(self, evt=None):
# 1) Get the image key
# Start with the table_id if there is one
tblNum = None
if p.table_id:
dlg = wx.TextEntryDialog(self, p.table_id + ":", "Enter " + p.table_id)
dlg.SetValue("0")
if dlg.ShowModal() == wx.ID_OK:
try:
tblNum = int(dlg.GetValue())
except ValueError:
errdlg = wx.MessageDialog(
self, "Invalid value for %s!" % (p.table_id), "Invalid value", wx.OK | wx.ICON_EXCLAMATION
)
errdlg.ShowModal()
return
dlg.Destroy()
else:
dlg.Destroy()
return
# Then get the image_id
dlg = wx.TextEntryDialog(self, p.image_id + ":", "Enter " + p.image_id)
dlg.SetValue("")
if dlg.ShowModal() == wx.ID_OK:
try:
imgNum = int(dlg.GetValue())
except ValueError:
errdlg = wx.MessageDialog(
self, "Invalid value for %s!" % (p.image_id), "Invalid value", wx.OK | wx.ICON_EXCLAMATION
)
errdlg.ShowModal()
return
dlg.Destroy()
else:
dlg.Destroy()
return
# Build the imkey
if p.table_id:
imkey = (tblNum, imgNum)
else:
imkey = (imgNum,)
dm = DataModel.getInstance()
if imkey not in dm.GetAllImageKeys():
errdlg = wx.MessageDialog(
self, "There is no image with that key.", "Couldn't find image", wx.OK | wx.ICON_EXCLAMATION
)
errdlg.ShowModal()
self.Destroy()
else:
# load the image
self.img_key = imkey
self.SetImage(imagetools.FetchImage(imkey), p.image_channel_colors)
self.DoLayout()
示例8: perform_datasize_vs_accuracy
def perform_datasize_vs_accuracy(self, given_dict, infer_dict, max_datasize=None, steps=10):
#Get experiment data in a dict
size = []
accuracy = []
if max_datasize is None:
max_datasize = len(self.dm.data)
data_step = max_datasize / steps
for i in range(steps):
cur_datasize = (i+1) * data_step
data = self.dm.data
while len(data) < cur_datasize:
data.extend(self.dm.data)
cur_data = data[:cur_datasize]
cur_dm = DataModel("")
cur_dm.set_data(cur_data)
cur_exp = Experimenter(cur_dm, self.attr_list)
actual = cur_exp.get_actual_result(given_dict, infer_dict)
estimation = cur_exp.generic_get_estimated_result(given_dict, infer_dict)
size.append(cur_datasize)
accuracy.append(abs(estimation - actual))
return (size, accuracy)
示例9: get_image_keys_at_row
def get_image_keys_at_row(self, row):
'''Returns a list of image keys at the given row or None if the column
names can't be found in col_labels
'''
if self.key_indices is None or self.grouping is None:
return None
else:
if self.grouping.lower() == 'image':
return [tuple(self.data[self.row_order,:][row, self.key_indices])]
elif self.grouping.lower() == 'object':
return [tuple(self.data[self.row_order,:][row, self.key_indices[:-1]])]
else:
dm = DataModel.getInstance()
return dm.GetImagesInGroup(self.grouping, self.get_row_key(row))
示例10: PerImageCounts
def PerImageCounts(self, filter_name=None, cb=None):
# Clear the current perClassObjects storage
for bin in self.classBins:
self.perClassObjects[bin.label] = []
# Retrieve a data model instance
dm = DataModel.getInstance()
# Retrieve image keys and initialize variables
imageKeys = dm.GetAllImageKeys(filter_name)
imageAmount = float(len(imageKeys))
perImageData = []
# Process all images
for k_index, imKey in enumerate(imageKeys):
try:
# Retrieve the keys of the objects in the current image
obKeys = dm.GetObjectsFromImage(imKey)
except:
raise ValueError('No such image: %s' % (imKey,))
# Calculate the amount of hits for each of the classes in the current image
classHits = {}
objectCount = [imKey[0]]
if obKeys:
classObjects = self.FilterObjectsFromClassN(keys = [imKey])
for clNum, bin in enumerate(self.classBins):
# Get the objects from the image which belong to the selected class
classHits[bin.label] = classObjects[float(clNum+1)]
# Store the total object count of this class for the current image
nrHits = len(classHits[bin.label])
objectCount.append(nrHits)
# Store the objects for the current class and image grouped
# by class if any are found for this class in the selected image
if nrHits > 0:
self.perClassObjects[bin.label] += classHits[bin.label]
else:
# If there are objects in the image, add zeros for all bins
[objectCount.append(0) for bin in self.classBins]
# Store the results for the current image and update the callback
# function if available
perImageData.append(objectCount)
if cb:
cb(min(1, k_index/imageAmount))
return perImageData
示例11: get_object_keys_at_row
def get_object_keys_at_row(self, row):
'''Returns a list of object keys at the given row or None if the column
names can't be found in col_labels
'''
if self.key_indices is None or self.grouping is None:
return None
else:
dm = DataModel.getInstance()
# If the key index for the row is an object key, just return that key
if self.grouping.lower() == 'object':
return [tuple(self.data[self.row_order,:][row, self.key_indices])]
else: # Otherwise, return all object keys in the image
imkeys = self.get_image_keys_at_row(row)
obkeys = []
for imkey in imkeys:
obs = dm.GetObjectCountFromImage(imkey)
obkeys += [tuple(list(imkey)+[i]) for i in range(1,obs+1)]
return obkeys
示例12: __init__
def __init__(self):
self._dm = DataModel() # Primary data model.
self._topics = [] # All topics for which judgments have been loaded.
self._documents = [] # Documents for which we have a judgment for the
# currently selected topic.
self._selected_topic = None # Currently selected topic.
self._selected_document = None # Currently selected document.
self._rationales = [] # Rationales for the currently selected document.
self._display_text = None # Text of document being manipulated.
super(CWR, self).__init__()
self.init_UI()
# For testing WebView.
'''
示例13: on_dclick_label
def on_dclick_label(self, evt):
'''Handle display of images and objects'''
if evt.Row >= 0:
obkeys = self.grid.Table.get_object_keys_at_row(evt.Row)
if self.grid.Table.grouping is None:
# We need to know how the table is grouped to know what to do
logging.warn('CPA does not know how to link this table to your images. Can\'t launch ImageViewer.')
return
elif self.grid.Table.grouping.lower() == 'object':
# For per-object grouping, show the objects in the image
imview = imagetools.ShowImage(obkeys[0][:-1],
p.image_channel_colors,
parent=self.Parent)
if obkeys is not None:
for obkey in obkeys:
imview.SelectObject(obkey)
elif self.grid.Table.grouping.lower() == 'image':
# For per-image grouping just show the images.
# If there is only one object, then highlight it
if obkeys is not None and len(obkeys) == 1:
imview = imagetools.ShowImage(obkeys[0][:-1],
p.image_channel_colors,
parent=self.Parent)
imview.SelectObject(obkeys[0])
else:
imkeys = self.grid.Table.get_image_keys_at_row(evt.Row)
if imkeys:
#XXX: warn if there are a lot
for imkey in imkeys:
imagetools.ShowImage(imkey, p.image_channel_colors,
parent=self.Parent)
else:
key_cols = self.grid.Table.get_row_key(evt.Row)
if key_cols:
dm = DataModel.getInstance()
imkeys = dm.GetImagesInGroup(self.grid.Table.grouping, key_cols)
for imkey in imkeys:
imagetools.ShowImage(imkey, p.image_channel_colors,
parent=self.Parent)
示例14: FilterObjectsFromClassN
def FilterObjectsFromClassN(self, classN = None, keys = None):
'''
Filter the input objects to output the keys of those in classN,
using a defined SVM model classifier.
'''
# Retrieve instance of the database connection
db = dbconnect.DBConnect.getInstance()
object_data = {}
if isinstance(keys, str):
object_data[0] = db.GetCellDataForClassifier(keys)
elif keys != []:
if len(keys) == len(dbconnect.image_key_columns()):
# Retrieve instance of the data model and retrieve objects in the requested image
dm = DataModel.getInstance()
obKeys = dm.GetObjectsFromImage(keys[0])
else:
obKeys = keys
for key in obKeys:
object_data[key] = db.GetCellDataForClassifier(key)
sorted_keys = sorted(object_data.keys())
values_array = np.array([object_data[key] for key in sorted_keys])
scaled_values = self.ScaleData(values_array)
pred_labels = self.model.predict(scaled_values)
# Group the object keys per class
classObjects = {}
for index in range(1, len(self.classBins)+1):
classObjects[float(index)] = []
for index, label in enumerate(pred_labels):
classObjects[np.int(label)+1].append(sorted_keys[index])
# Return either a summary of all classes and their corresponding objects
# or just the objects for a specific class
if classN is None:
return classObjects
else:
return classObjects[classN]
示例15: FormatPlateMapData
def FormatPlateMapData(keys_and_vals, categorical=False):
'''
keys_and_vals -- a list of lists of well-keys and values
eg: [['p1', 'A01', 0.2],
['p1', 'A02', 0.9], ...]
returns a 2-tuple containing:
-an array in the shape of the plate containing the given values with
NaNs filling empty slots. If multiple sites per-well are given, then
the array will be shaped (rows, cols, sites)
-an array in the shape of the plate containing the given keys with
(UnknownPlate, UnknownWell) filling empty slots
'''
from itertools import groupby
keys_and_vals = np.array(keys_and_vals)
nkeycols = len(dbconnect.well_key_columns())
shape = list(p.plate_shape)
if p.plate_type == '5600':
well_keys = keys_and_vals[:,:-1] # first column(s) are keys
data = keys_and_vals[:,-1] # last column is data
assert data.ndim == 1
if len(data) < 5600: raise Exception(
'''The measurement you chose to plot was missing for some spots.
Because CPA doesn't know the well labelling convention used by this
microarray, we can't be sure how to plot the data. If you are
plotting an object measurement, you may have some spots with 0
objects and therefore no entry in the table.''')
assert len(data) == 5600
data = np.array(list(meander(data.reshape(shape)))).reshape(shape)
sort_indices = np.array(list(meander(np.arange(np.prod(shape)).reshape(shape)))).reshape(shape)
well_keys = np.array(list(meander(well_keys.reshape(shape + [nkeycols] )))).reshape(shape + [nkeycols])
return data, well_keys, sort_indices
# compute the number of sites-per-well as the max number of rows with the same well-key
nsites = max([len(list(grp))
for k, grp in groupby(keys_and_vals,
lambda row: tuple(row[:nkeycols]))
])
if nsites > 1:
# add a sites dimension to the array shape if there's >1 site per well
shape += [nsites]
data = np.ones(shape) * np.nan
if categorical:
data = data.astype('object')
if p.plate_id:
dummy_key = ('UnknownPlate', 'UnknownWell')
else:
dummy_key = ('UnknownWell',)
well_keys = np.array([dummy_key] * np.prod(shape),
dtype=object).reshape(shape + [nkeycols])
sort_indices = np.ones(data.shape)*np.nan
dm = DataModel.getInstance()
ind = keys_and_vals.argsort(axis=0)
for i, (k, well_grp) in enumerate(groupby(keys_and_vals[ind[:,len(dummy_key)-1],:],
lambda row: tuple(row[:len(dummy_key)]))):
(row, col) = dm.get_well_position_from_name(k[-1])
well_data = np.array(list(well_grp))[:,-1]
if len(well_data) == 1:
data[row, col] = well_data[0]
sort_indices[row,col] = ind[:,len(dummy_key)-1][i]
else:
data[row, col] = well_data
sort_indices[row,col] = ind[:,len(dummy_key)-1][i*nsites + np.array(range(nsites))]
well_keys[row, col] = k
return data, well_keys, sort_indices