本文整理匯總了Python中ctapipe.calib.CameraCalibrator.calibrate方法的典型用法代碼示例。如果您正苦於以下問題:Python CameraCalibrator.calibrate方法的具體用法?Python CameraCalibrator.calibrate怎麽用?Python CameraCalibrator.calibrate使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類ctapipe.calib.CameraCalibrator
的用法示例。
在下文中一共展示了CameraCalibrator.calibrate方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_basic_muon_reco
# 需要導入模塊: from ctapipe.calib import CameraCalibrator [as 別名]
# 或者: from ctapipe.calib.CameraCalibrator import calibrate [as 別名]
def test_basic_muon_reco(example_event):
"""
Really simplistic test: just run the analyze_muon_event code, to make
sure it doesn't crash. The input event is so far not a muon, so no output
is generated.
Parameters
----------
test_event - a sample event (fixture)
"""
calib = CameraCalibrator()
calib.calibrate(example_event)
muon_params = muon.analyze_muon_event(example_event)
assert muon_params is not None
示例2: SingleTelEventDisplay
# 需要導入模塊: from ctapipe.calib import CameraCalibrator [as 別名]
# 或者: from ctapipe.calib.CameraCalibrator import calibrate [as 別名]
class SingleTelEventDisplay(Tool):
name = "ctapipe-display-single-tel"
description = Unicode(__doc__)
infile = Unicode(help="input file to read", default='').tag(config=True)
tel = Int(help='Telescope ID to display', default=0).tag(config=True)
channel = Integer(help="channel number to display", min=0, max=1).tag(
config=True)
write = Bool(help="Write out images to PNG files", default=False).tag(
config=True)
clean = Bool(help="Apply image cleaning", default=False).tag(config=True)
hillas = Bool(help="Apply and display Hillas parametrization",
default=False).tag(config=True)
samples = Bool(help="Show each sample", default=False).tag(config=True)
display = Bool(help="Display results in interactive window",
default_value=True).tag(config=True)
delay = Float(help='delay between events in s', default_value=0.01,
min=0.001).tag(config=True)
progress = Bool(help='display progress bar', default_value=True).tag(
config=True)
aliases = Dict({'infile': 'EventFileReaderFactory.input_path',
'tel': 'SingleTelEventDisplay.tel',
'max-events': 'EventFileReaderFactory.max_events',
'channel': 'SingleTelEventDisplay.channel',
'write': 'SingleTelEventDisplay.write',
'clean': 'SingleTelEventDisplay.clean',
'hillas': 'SingleTelEventDisplay.hillas',
'samples': 'SingleTelEventDisplay.samples',
'display': 'SingleTelEventDisplay.display',
'delay': 'SingleTelEventDisplay.delay',
'progress': 'SingleTelEventDisplay.progress'
})
classes = List([EventFileReaderFactory, CameraCalibrator])
def setup(self):
reader_factory = EventFileReaderFactory(None, self)
reader_class = reader_factory.get_class()
self.reader = reader_class(None, self)
self.calibrator = CameraCalibrator(config=None, tool=self,
origin=self.reader.origin)
self.source = self.reader.read(allowed_tels=[self.tel, ])
self.log.info('SELECTING EVENTS FROM TELESCOPE {}'.format(self.tel))
def start(self):
disp = None
for event in tqdm(self.source,
desc='Tel{}'.format(self.tel),
total=self.reader.max_events,
disable=~self.progress):
self.log.debug(event.trig)
self.log.debug("Energy: {}".format(event.mc.energy))
self.calibrator.calibrate(event)
if disp is None:
x, y = event.inst.pixel_pos[self.tel]
focal_len = event.inst.optical_foclen[self.tel]
geom = CameraGeometry.guess(x, y, focal_len)
self.log.info(geom)
disp = CameraDisplay(geom)
# disp.enable_pixel_picker()
disp.add_colorbar()
if self.display:
plt.show(block=False)
# display the event
disp.axes.set_title('CT{:03d} ({}), event {:06d}'.format(
self.tel, geom.cam_id, event.r0.event_id)
)
if self.samples:
# display time-varying event
data = event.dl0.tel[self.tel].pe_samples[self.channel]
for ii in range(data.shape[1]):
disp.image = data[:, ii]
disp.set_limits_percent(70)
plt.suptitle("Sample {:03d}".format(ii))
if self.display:
plt.pause(self.delay)
if self.write:
plt.savefig('CT{:03d}_EV{:10d}_S{:02d}.png'
.format(self.tel, event.r0.event_id, ii))
else:
# display integrated event:
im = event.dl1.tel[self.tel].image[self.channel]
if self.clean:
mask = tailcuts_clean(geom, im, picture_thresh=10,
boundary_thresh=7)
im[~mask] = 0.0
disp.image = im
#.........這裏部分代碼省略.........
示例3: DisplayDL1Calib
# 需要導入模塊: from ctapipe.calib import CameraCalibrator [as 別名]
# 或者: from ctapipe.calib.CameraCalibrator import calibrate [as 別名]
class DisplayDL1Calib(Tool):
name = "DisplayDL1Calib"
description = "Calibrate dl0 data to dl1, and plot the photoelectron " \
"images."
telescope = Int(None, allow_none=True,
help='Telescope to view. Set to None to display all '
'telescopes.').tag(config=True)
aliases = Dict(dict(f='EventFileReaderFactory.input_path',
r='EventFileReaderFactory.reader',
max_events='EventFileReaderFactory.max_events',
extractor='ChargeExtractorFactory.extractor',
window_width='ChargeExtractorFactory.window_width',
t0='ChargeExtractorFactory.t0',
window_shift='ChargeExtractorFactory.window_shift',
sig_amp_cut_HG='ChargeExtractorFactory.sig_amp_cut_HG',
sig_amp_cut_LG='ChargeExtractorFactory.sig_amp_cut_LG',
lwt='ChargeExtractorFactory.lwt',
clip_amplitude='CameraDL1Calibrator.clip_amplitude',
T='DisplayDL1Calib.telescope',
O='ImagePlotter.output_path'
))
flags = Dict(dict(D=({'ImagePlotter': {'display': True}},
"Display the photoelectron images on-screen as they "
"are produced.")
))
classes = List([EventFileReaderFactory,
ChargeExtractorFactory,
CameraDL1Calibrator,
ImagePlotter
])
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.reader = None
self.calibrator = None
self.plotter = None
def setup(self):
kwargs = dict(config=self.config, tool=self)
reader_factory = EventFileReaderFactory(**kwargs)
reader_class = reader_factory.get_class()
self.reader = reader_class(**kwargs)
self.calibrator = CameraCalibrator(origin=self.reader.origin, **kwargs)
self.plotter = ImagePlotter(**kwargs)
def start(self):
source = self.reader.read()
for event in source:
self.calibrator.calibrate(event)
tel_list = event.r0.tels_with_data
if self.telescope:
if self.telescope not in tel_list:
continue
tel_list = [self.telescope]
for telid in tel_list:
self.plotter.plot(event, telid)
def finish(self):
self.plotter.finish()
示例4: ImageSumDisplayerTool
# 需要導入模塊: from ctapipe.calib import CameraCalibrator [as 別名]
# 或者: from ctapipe.calib.CameraCalibrator import calibrate [as 別名]
class ImageSumDisplayerTool(Tool):
description = Unicode(__doc__)
name = "ctapipe-display-imagesum"
infile = Unicode(
help='input simtelarray file',
default="/Users/kosack/Data/CTA/Prod3/gamma.simtel.gz"
).tag(config=True)
telgroup = Integer(
help='telescope group number', default=1
).tag(config=True)
max_events = Integer(
help='stop after this many events if non-zero', default_value=0, min=0
).tag(config=True)
output_suffix = Unicode(
help='suffix (file extension) of output '
'filenames to write images '
'to (no writing is done if blank). '
'Images will be named [EVENTID][suffix]',
default_value=""
).tag(config=True)
aliases = Dict({
'infile': 'ImageSumDisplayerTool.infile',
'telgroup': 'ImageSumDisplayerTool.telgroup',
'max-events': 'ImageSumDisplayerTool.max_events',
'output-suffix': 'ImageSumDisplayerTool.output_suffix'
})
classes = List([CameraCalibrator, SimTelEventSource])
def setup(self):
# load up the telescope types table (need to first open a file, a bit of
# a hack until a proper insturment module exists) and select only the
# telescopes with the same camera type
self.reader = SimTelEventSource(
input_url=self.infile, max_events=self.max_events
)
for event in self.reader:
camtypes = event.inst.subarray.to_table().group_by('camera_type')
event.inst.subarray.info(printer=self.log.info)
break
group = camtypes.groups[self.telgroup]
self._selected_tels = list(group['id'].data)
self._base_tel = self._selected_tels[0]
self.log.info(
"Telescope group %d: %s", self.telgroup,
str(event.inst.subarray.tel[self._selected_tels[0]])
)
self.log.info(f"SELECTED TELESCOPES:{self._selected_tels}")
self.calibrator = CameraCalibrator(
parent=self, eventsource=self.reader
)
self.reader.allowed_tels = self._selected_tels
def start(self):
geom = None
imsum = None
disp = None
for event in self.reader:
self.calibrator.calibrate(event)
if geom is None:
geom = event.inst.subarray.tel[self._base_tel].camera
imsum = np.zeros(shape=geom.pix_x.shape, dtype=np.float)
disp = CameraDisplay(geom, title=geom.cam_id)
disp.add_colorbar()
disp.cmap = 'viridis'
if len(event.dl0.tels_with_data) <= 2:
continue
imsum[:] = 0
for telid in event.dl0.tels_with_data:
imsum += event.dl1.tel[telid].image[0]
self.log.info(
"event={} ntels={} energy={}".format(
event.r0.event_id, len(event.dl0.tels_with_data),
event.mc.energy
)
)
disp.image = imsum
plt.pause(0.1)
if self.output_suffix is not "":
filename = "{:020d}{}".format(
event.r0.event_id, self.output_suffix
)
self.log.info(f"saving: '{filename}'")
#.........這裏部分代碼省略.........
示例5: MuonDisplayerTool
# 需要導入模塊: from ctapipe.calib import CameraCalibrator [as 別名]
# 或者: from ctapipe.calib.CameraCalibrator import calibrate [as 別名]
class MuonDisplayerTool(Tool):
name = 'ctapipe-display-muons'
description = t.Unicode(__doc__)
events = t.Unicode("",
help="input event data file").tag(config=True)
outfile = t.Unicode("muons.hdf5", help='HDF5 output file name').tag(
config=True)
display = t.Bool(
help='display the camera events', default=False
).tag(config=True)
classes = t.List([
CameraCalibrator, EventSourceFactory
])
aliases = t.Dict({
'input': 'MuonDisplayerTool.events',
'outfile': 'MuonDisplayerTool.outfile',
'display': 'MuonDisplayerTool.display',
'max_events': 'EventSourceFactory.max_events',
'allowed_tels': 'EventSourceFactory.allowed_tels',
})
def setup(self):
if self.events == '':
raise ToolConfigurationError("please specify --input <events file>")
self.log.debug("input: %s", self.events)
self.source = EventSourceFactory.produce(input_url=self.events)
self.calib = CameraCalibrator(
config=self.config, tool=self, eventsource=self.source
)
self.writer = HDF5TableWriter(self.outfile, "muons")
def start(self):
numev = 0
self.num_muons_found = defaultdict(int)
for event in tqdm(self.source, desc='detecting muons'):
self.calib.calibrate(event)
muon_evt = analyze_muon_event(event)
if numev == 0:
_exclude_some_columns(event.inst.subarray, self.writer)
numev += 1
if not muon_evt['MuonIntensityParams']:
# No telescopes contained a good muon
continue
else:
if self.display:
plot_muon_event(event, muon_evt)
for tel_id in muon_evt['TelIds']:
idx = muon_evt['TelIds'].index(tel_id)
intens_params = muon_evt['MuonIntensityParams'][idx]
if intens_params is not None:
ring_params = muon_evt['MuonRingParams'][idx]
cam_id = str(event.inst.subarray.tel[tel_id].camera)
self.num_muons_found[cam_id] += 1
self.log.debug("INTENSITY: %s", intens_params)
self.log.debug("RING: %s", ring_params)
self.writer.write(table_name=cam_id,
containers=[intens_params,
ring_params])
self.log.info(
"Event Number: %d, found %s muons",
numev, dict(self.num_muons_found)
)
def finish(self):
Provenance().add_output_file(self.outfile,
role='dl1.tel.evt.muon')
self.writer.close()
示例6: DisplayDL1Calib
# 需要導入模塊: from ctapipe.calib import CameraCalibrator [as 別名]
# 或者: from ctapipe.calib.CameraCalibrator import calibrate [as 別名]
class DisplayDL1Calib(Tool):
name = "ctapipe-display-dl1"
description = __doc__
telescope = Int(
None,
allow_none=True,
help='Telescope to view. Set to None to display all '
'telescopes.'
).tag(config=True)
extractor_product = tool_utils.enum_trait(
ImageExtractor,
default='NeighborPeakWindowSum'
)
aliases = Dict(
dict(
max_events='EventSource.max_events',
extractor='DisplayDL1Calib.extractor_product',
T='DisplayDL1Calib.telescope',
O='ImagePlotter.output_path'
)
)
flags = Dict(
dict(
D=(
{
'ImagePlotter': {
'display': True
}
},
"Display the photoelectron images on-screen as they "
"are produced."
)
)
)
classes = List(
[
EventSource,
CameraDL1Calibrator,
ImagePlotter
] + tool_utils.classes_with_traits(ImageExtractor)
)
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.eventsource = None
self.calibrator = None
self.plotter = None
def setup(self):
self.eventsource = EventSource.from_url(
get_dataset_path("gamma_test_large.simtel.gz"),
parent=self,
)
self.calibrator = CameraCalibrator(
eventsource=self.eventsource,
parent=self,
)
self.plotter = ImagePlotter(parent=self)
def start(self):
for event in self.eventsource:
self.calibrator.calibrate(event)
tel_list = event.r0.tels_with_data
if self.telescope:
if self.telescope not in tel_list:
continue
tel_list = [self.telescope]
for telid in tel_list:
self.plotter.plot(event, telid)
def finish(self):
self.plotter.finish()
示例7: CameraCalibrator
# 需要導入模塊: from ctapipe.calib import CameraCalibrator [as 別名]
# 或者: from ctapipe.calib.CameraCalibrator import calibrate [as 別名]
"""
very simple example that loads a single event into memory, for exploration
purposes
"""
import sys
from ctapipe.calib import CameraCalibrator
from ctapipe.io import event_source
from ctapipe.utils import get_dataset_path
if __name__ == '__main__':
calib = CameraCalibrator(r1_product="HESSIOR1Calibrator")
if len(sys.argv) >= 2:
filename = sys.argv[1]
else:
filename = get_dataset_path("gamma_test_large.simtel.gz")
with event_source(filename, max_events=1) as source:
for event in source:
calib.calibrate(event)
print(event)
示例8: extract_images
# 需要導入模塊: from ctapipe.calib import CameraCalibrator [as 別名]
# 或者: from ctapipe.calib.CameraCalibrator import calibrate [as 別名]
def extract_images(simtel_file_path,
tel_id_filter_list=None,
event_id_filter_list=None,
output_directory=None):
# EXTRACT IMAGES ##########################################################
# hessio_event_source returns a Python generator that streams data from an
# EventIO/HESSIO MC data file (e.g. a standard CTA data file).
# This generator contains ctapipe.core.Container instances ("event").
#
# Parameters:
# - max_events: maximum number of events to read
# - allowed_tels: select only a subset of telescope, if None, all are read.
source = hessio_event_source(simtel_file_path, allowed_tels=tel_id_filter_list)
# ITERATE OVER EVENTS #####################################################
calib = CameraCalibrator(None, None)
for event in source:
calib.calibrate(event) # calibrate the event
event_id = int(event.dl0.event_id)
if (event_id_filter_list is None) or (event_id in event_id_filter_list):
#print("event", event_id)
# ITERATE OVER IMAGES #############################################
for tel_id in event.trig.tels_with_trigger:
tel_id = int(tel_id)
if tel_id in tel_id_filter_list:
#print("telescope", tel_id)
# CHECK THE IMAGE GEOMETRY ################################
#print("checking geometry")
x, y = event.inst.pixel_pos[tel_id]
foclen = event.inst.optical_foclen[tel_id]
geom = CameraGeometry.guess(x, y, foclen)
if (geom.pix_type != "hexagonal") or (geom.cam_id != "LSTCam"):
raise ValueError("Telescope {}: error (the input image is not a valide LSTCam telescope image) -> {} ({})".format(tel_id, geom.pix_type, geom.cam_id))
# GET IMAGES ##############################################
pe_image = event.mc.tel[tel_id].photo_electron_image # 1D np array
#uncalibrated_image = event.dl0.tel[tel_id].adc_sums # ctapipe 0.3.0
uncalibrated_image = event.r0.tel[tel_id].adc_sums # ctapipe 0.4.0
pedestal = event.mc.tel[tel_id].pedestal
gain = event.mc.tel[tel_id].dc_to_pe
pixel_pos = event.inst.pixel_pos[tel_id]
calibrated_image = event.dl1.tel[tel_id].image
calibrated_image[1, calibrated_image[0,:] <= LST_CAM_CHANNEL_THRESHOLD] = 0
calibrated_image[0, calibrated_image[0,:] > LST_CAM_CHANNEL_THRESHOLD] = 0
calibrated_image = calibrated_image.sum(axis=0)
#print(pe_image.shape)
#print(calibrated_image.shape)
#print(uncalibrated_image.shape)
#print(pedestal.shape)
#print(gain.shape)
#print(pixel_pos.shape)
#print(pixel_pos[0])
#print(pixel_pos[1])
# CONVERTING GEOMETRY (1D TO 2D) ##########################
buffer_id_str = geom.cam_id + "0"
geom2d, pe_image_2d = ctapipe_geom_converter.convert_geometry_1d_to_2d(geom, pe_image, buffer_id_str, add_rot=0)
geom2d, calibrated_image_2d = ctapipe_geom_converter.convert_geometry_1d_to_2d(geom, calibrated_image, buffer_id_str, add_rot=0)
geom2d, uncalibrated_image_2d_ch0 = ctapipe_geom_converter.convert_geometry_1d_to_2d(geom, uncalibrated_image[0], buffer_id_str, add_rot=0)
geom2d, uncalibrated_image_2d_ch1 = ctapipe_geom_converter.convert_geometry_1d_to_2d(geom, uncalibrated_image[1], buffer_id_str, add_rot=0)
geom2d, pedestal_2d_ch0 = ctapipe_geom_converter.convert_geometry_1d_to_2d(geom, pedestal[0], buffer_id_str, add_rot=0)
geom2d, pedestal_2d_ch1 = ctapipe_geom_converter.convert_geometry_1d_to_2d(geom, pedestal[1], buffer_id_str, add_rot=0)
geom2d, gains_2d_ch0 = ctapipe_geom_converter.convert_geometry_1d_to_2d(geom, gain[0], buffer_id_str, add_rot=0)
geom2d, gains_2d_ch1 = ctapipe_geom_converter.convert_geometry_1d_to_2d(geom, gain[1], buffer_id_str, add_rot=0)
# Make a mock pixel position array...
pixel_pos_2d = np.array(np.meshgrid(np.linspace(pixel_pos[0].min(), pixel_pos[0].max(), pe_image_2d.shape[0]),
np.linspace(pixel_pos[1].min(), pixel_pos[1].max(), pe_image_2d.shape[1])))
###########################################################
# The ctapipe geometry converter operate on one channel
# only and then takes and return a 2D array but datapipe
# fits files keep all channels and thus takes 3D arrays...
#.........這裏部分代碼省略.........
示例9: get_dataset_path
# 需要導入模塊: from ctapipe.calib import CameraCalibrator [as 別名]
# 或者: from ctapipe.calib.CameraCalibrator import calibrate [as 別名]
'ASTRICam': (5, 7, 2),
}
input_url = get_dataset_path('gamma_test_large.simtel.gz')
event_source = EventSourceFactory.produce(input_url=input_url)
calibrator = CameraCalibrator(
eventsource=event_source,
)
reco = HillasReconstructor()
for event in event_source:
print('Event', event.count)
calibrator.calibrate(event)
# mapping of telescope_id to parameters for stereo reconstruction
hillas_containers = {}
pointing_azimuth = {}
pointing_altitude = {}
time_gradients = {}
for telescope_id, dl1 in event.dl1.tel.items():
camera = event.inst.subarray.tels[telescope_id].camera
image = dl1.image[0]
peakpos = dl1.peakpos[0]
# cleaning
boundary, picture, min_neighbors = cleaning_level[camera.cam_id]
示例10: SingleTelEventDisplay
# 需要導入模塊: from ctapipe.calib import CameraCalibrator [as 別名]
# 或者: from ctapipe.calib.CameraCalibrator import calibrate [as 別名]
class SingleTelEventDisplay(Tool):
name = "ctapipe-display-televents"
description = Unicode(__doc__)
infile = Unicode(help="input file to read", default='').tag(config=True)
tel = Int(help='Telescope ID to display', default=0).tag(config=True)
channel = Integer(
help="channel number to display", min=0, max=1
).tag(config=True)
write = Bool(
help="Write out images to PNG files", default=False
).tag(config=True)
clean = Bool(help="Apply image cleaning", default=False).tag(config=True)
hillas = Bool(
help="Apply and display Hillas parametrization", default=False
).tag(config=True)
samples = Bool(help="Show each sample", default=False).tag(config=True)
display = Bool(
help="Display results in interactive window", default_value=True
).tag(config=True)
delay = Float(
help='delay between events in s', default_value=0.01, min=0.001
).tag(config=True)
progress = Bool(
help='display progress bar', default_value=True
).tag(config=True)
aliases = Dict({
'infile': 'SingleTelEventDisplay.infile',
'tel': 'SingleTelEventDisplay.tel',
'max-events': 'EventSource.max_events',
'channel': 'SingleTelEventDisplay.channel',
'write': 'SingleTelEventDisplay.write',
'clean': 'SingleTelEventDisplay.clean',
'hillas': 'SingleTelEventDisplay.hillas',
'samples': 'SingleTelEventDisplay.samples',
'display': 'SingleTelEventDisplay.display',
'delay': 'SingleTelEventDisplay.delay',
'progress': 'SingleTelEventDisplay.progress'
})
classes = List([EventSource, CameraCalibrator])
def __init__(self, **kwargs):
super().__init__(**kwargs)
def setup(self):
print('TOLLES INFILE', self.infile)
self.event_source = EventSource.from_url(self.infile, parent=self)
self.event_source.allowed_tels = {self.tel, }
self.calibrator = CameraCalibrator(
parent=self, eventsource=self.event_source
)
self.log.info(f'SELECTING EVENTS FROM TELESCOPE {self.tel}')
def start(self):
disp = None
for event in tqdm(
self.event_source,
desc=f'Tel{self.tel}',
total=self.event_source.max_events,
disable=~self.progress
):
self.log.debug(event.trig)
self.log.debug(f"Energy: {event.mc.energy}")
self.calibrator.calibrate(event)
if disp is None:
geom = event.inst.subarray.tel[self.tel].camera
self.log.info(geom)
disp = CameraDisplay(geom)
# disp.enable_pixel_picker()
disp.add_colorbar()
if self.display:
plt.show(block=False)
# display the event
disp.axes.set_title(
'CT{:03d} ({}), event {:06d}'.format(
self.tel, geom.cam_id, event.r0.event_id
)
)
if self.samples:
# display time-varying event
data = event.dl0.tel[self.tel].waveform[self.channel]
for ii in range(data.shape[1]):
disp.image = data[:, ii]
disp.set_limits_percent(70)
plt.suptitle(f"Sample {ii:03d}")
if self.display:
plt.pause(self.delay)
if self.write:
plt.savefig(
#.........這裏部分代碼省略.........
示例11: ImageSumDisplayerTool
# 需要導入模塊: from ctapipe.calib import CameraCalibrator [as 別名]
# 或者: from ctapipe.calib.CameraCalibrator import calibrate [as 別名]
class ImageSumDisplayerTool(Tool):
description = Unicode(__doc__)
name = "ctapipe-image-sum-display"
infile = Unicode(help='input simtelarray file',
default="/Users/kosack/Data/CTA/Prod3/gamma.simtel.gz"
).tag(config=True)
telgroup = Integer(help='telescope group number', default=1).tag(
config=True)
max_events = Integer(help='stop after this many events if non-zero',
default_value=0, min=0).tag(config=True)
output_suffix=Unicode(help='suffix (file extension) of output '
'filenames to write images '
'to (no writing is done if blank). '
'Images will be named [EVENTID][suffix]' ,
default_value="").tag(config=True)
aliases = Dict({'infile': 'ImageSumDisplayerTool.infile',
'telgroup': 'ImageSumDisplayerTool.telgroup',
'max-events': 'ImageSumDisplayerTool.max_events',
'output-suffix': 'ImageSumDisplayerTool.output_suffix'})
classes = List([CameraCalibrator,])
def setup(self):
# load up the telescope types table (need to first open a file, a bit of
# a hack until a proper insturment module exists) and select only the
# telescopes with the same camera type
data = next(hessio_event_source(self.infile, max_events=1))
camtypes = get_camera_types(data.inst)
print_camera_types(data.inst, printer=self.log.info)
group = camtypes.groups[self.telgroup]
self._selected_tels = group['tel_id'].data
self._base_tel = self._selected_tels[0]
self.log.info("Telescope group %d: %s with %s camera", self.telgroup,
group[0]['tel_type'], group[0]['cam_type'])
self.log.info("SELECTED TELESCOPES:{}".format(self._selected_tels))
self.calibrator = CameraCalibrator(self.config, self)
def start(self):
geom = None
imsum = None
disp = None
for data in hessio_event_source(self.infile,
allowed_tels=self._selected_tels,
max_events=self.max_events):
self.calibrator.calibrate(data)
if geom is None:
x, y = data.inst.pixel_pos[self._base_tel]
flen = data.inst.optical_foclen[self._base_tel]
geom = CameraGeometry.guess(x, y, flen)
imsum = np.zeros(shape=x.shape, dtype=np.float)
disp = CameraDisplay(geom, title=geom.cam_id)
disp.add_colorbar()
disp.cmap = 'viridis'
if len(data.dl0.tels_with_data) <= 2:
continue
imsum[:] = 0
for telid in data.dl0.tels_with_data:
imsum += data.dl1.tel[telid].image[0]
self.log.info("event={} ntels={} energy={}" \
.format(data.r0.event_id,
len(data.dl0.tels_with_data),
data.mc.energy))
disp.image = imsum
plt.pause(0.1)
if self.output_suffix is not "":
filename = "{:020d}{}".format(data.r0.event_id,
self.output_suffix)
self.log.info("saving: '{}'".format(filename))
plt.savefig(filename)
示例12: extract_images
# 需要導入模塊: from ctapipe.calib import CameraCalibrator [as 別名]
# 或者: from ctapipe.calib.CameraCalibrator import calibrate [as 別名]
def extract_images(simtel_file_path,
tel_id_filter_list=None,
event_id_filter_list=None,
output_directory=None,
crop=True):
# EXTRACT IMAGES ##########################################################
# hessio_event_source returns a Python generator that streams data from an
# EventIO/HESSIO MC data file (e.g. a standard CTA data file).
# This generator contains ctapipe.core.Container instances ("event").
#
# Parameters:
# - max_events: maximum number of events to read
# - allowed_tels: select only a subset of telescope, if None, all are read.
source = hessio_event_source(simtel_file_path, allowed_tels=tel_id_filter_list)
# ITERATE OVER EVENTS #####################################################
calib = CameraCalibrator(None, None)
for event in source:
calib.calibrate(event) # calibrate the event
event_id = int(event.dl0.event_id)
if (event_id_filter_list is None) or (event_id in event_id_filter_list):
#print("event", event_id)
# ITERATE OVER IMAGES #############################################
for tel_id in event.trig.tels_with_trigger:
tel_id = int(tel_id)
if tel_id in tel_id_filter_list:
#print("telescope", tel_id)
# CHECK THE IMAGE GEOMETRY (ASTRI ONLY) ###################
# TODO
#print("checking geometry")
x, y = event.inst.pixel_pos[tel_id]
foclen = event.inst.optical_foclen[tel_id]
geom = CameraGeometry.guess(x, y, foclen)
if (geom.pix_type != "rectangular") or (geom.cam_id not in ("ASTRICam", "ASTRI")):
raise ValueError("Telescope {}: error (the input image is not a valide ASTRI telescope image) -> {} ({})".format(tel_id, geom.pix_type, geom.cam_id))
# GET IMAGES ##############################################
pe_image = event.mc.tel[tel_id].photo_electron_image # 1D np array
#uncalibrated_image = event.dl0.tel[tel_id].adc_sums # ctapipe 0.3.0
uncalibrated_image = event.r0.tel[tel_id].adc_sums # ctapipe 0.4.0
pedestal = event.mc.tel[tel_id].pedestal
gain = event.mc.tel[tel_id].dc_to_pe
pixel_pos = event.inst.pixel_pos[tel_id]
calibrated_image = event.dl1.tel[tel_id].image
calibrated_image[1, calibrated_image[0,:] <= ASTRI_CAM_CHANNEL_THRESHOLD] = 0
calibrated_image[0, calibrated_image[0,:] > ASTRI_CAM_CHANNEL_THRESHOLD] = 0
calibrated_image = calibrated_image.sum(axis=0)
#print(pe_image.shape)
#print(calibrated_image.shape)
#print(uncalibrated_image.shape)
#print(pedestal.shape)
#print(gain.shape)
#print(pixel_pos.shape)
#print(pixel_pos[0])
#print(pixel_pos[1])
# CONVERTING GEOMETRY (1D TO 2D) ##########################
pe_image_2d = geometry_converter.astri_to_2d_array(pe_image, crop=crop)
calibrated_image_2d = geometry_converter.astri_to_2d_array(calibrated_image, crop=crop)
uncalibrated_image_2d = geometry_converter.astri_to_3d_array(uncalibrated_image, crop=crop)
pedestal_2d = geometry_converter.astri_to_3d_array(pedestal, crop=crop)
gains_2d = geometry_converter.astri_to_3d_array(gain, crop=crop)
pixel_pos_2d = geometry_converter.astri_to_3d_array(pixel_pos, crop=crop)
#print(pe_image_2d.shape)
#print(calibrated_image_2d.shape)
#print(uncalibrated_image_2d.shape)
#print(pedestal_2d.shape)
#print(gains_2d.shape)
#print(pixel_pos_2d.shape)
#sys.exit(0)
# GET PIXEL MASK ##########################################
pixel_mask = geometry_converter.astri_pixel_mask(crop) # 1 for pixels with actual data, 0 for virtual (blank) pixels
#.........這裏部分代碼省略.........
示例13: hessio_event_source
# 需要導入模塊: from ctapipe.calib import CameraCalibrator [as 別名]
# 或者: from ctapipe.calib.CameraCalibrator import calibrate [as 別名]
The most basic pipeline, using no special features of the framework other
than a for-loop. This is useful for debugging and profiling of speed.
"""
import sys
import numpy as np
from ctapipe.calib import CameraCalibrator
from ctapipe.io.hessio import hessio_event_source
if __name__ == '__main__':
filename = sys.argv[1]
source = hessio_event_source(filename, max_events=None)
cal = CameraCalibrator(None, None)
for data in source:
print("EVENT: {}, ENERGY: {:.2f}, TELS:{}"
.format(data.r0.event_id,
data.mc.energy,
len(data.dl0.tels_with_data))
)
cal.calibrate(data)
# now the calibrated images are in data.dl1.tel[x].image
示例14: SimpleEventWriter
# 需要導入模塊: from ctapipe.calib import CameraCalibrator [as 別名]
# 或者: from ctapipe.calib.CameraCalibrator import calibrate [as 別名]
class SimpleEventWriter(Tool):
name = 'ctapipe-simple-event-writer'
description = Unicode(__doc__)
infile = Unicode(help='input file to read', default='').tag(config=True)
outfile = Unicode(help='output file name', default_value='output.h5').tag(config=True)
progress = Bool(help='display progress bar', default_value=True).tag(config=True)
aliases = Dict({
'infile': 'EventSourceFactory.input_url',
'outfile': 'SimpleEventWriter.outfile',
'max-events': 'EventSourceFactory.max_events',
'progress': 'SimpleEventWriter.progress'
})
classes = List([EventSourceFactory, CameraCalibrator, CutFlow])
def setup(self):
self.log.info('Configure EventSourceFactory...')
self.event_source = EventSourceFactory.produce(
config=self.config, tool=self, product='SimTelEventSource'
)
self.event_source.allowed_tels = self.config['Analysis']['allowed_tels']
self.calibrator = CameraCalibrator(
config=self.config, tool=self, eventsource=self.event_source
)
self.writer = HDF5TableWriter(
filename=self.outfile, group_name='image_infos', overwrite=True
)
# Define Pre-selection for images
preselcuts = self.config['Preselect']
self.image_cutflow = CutFlow('Image preselection')
self.image_cutflow.set_cuts(dict(
no_sel=None,
n_pixel=lambda s: np.count_nonzero(s) < preselcuts['n_pixel']['min'],
image_amplitude=lambda q: q < preselcuts['image_amplitude']['min']
))
# Define Pre-selection for events
self.event_cutflow = CutFlow('Event preselection')
self.event_cutflow.set_cuts(dict(
no_sel=None
))
def start(self):
self.log.info('Loop on events...')
for event in tqdm(
self.event_source,
desc='EventWriter',
total=self.event_source.max_events,
disable=~self.progress):
self.event_cutflow.count('no_sel')
self.calibrator.calibrate(event)
for tel_id in event.dl0.tels_with_data:
self.image_cutflow.count('no_sel')
camera = event.inst.subarray.tel[tel_id].camera
dl1_tel = event.dl1.tel[tel_id]
# Image cleaning
image = dl1_tel.image[0] # Waiting for automatic gain selection
mask = tailcuts_clean(camera, image, picture_thresh=10, boundary_thresh=5)
cleaned = image.copy()
cleaned[~mask] = 0
# Preselection cuts
if self.image_cutflow.cut('n_pixel', cleaned):
continue
if self.image_cutflow.cut('image_amplitude', np.sum(cleaned)):
continue
# Image parametrisation
params = hillas_parameters(camera, cleaned)
# Save Ids, MC infos and Hillas informations
self.writer.write(camera.cam_id, [event.r0, event.mc, params])
def finish(self):
self.log.info('End of job.')
self.image_cutflow()
self.event_cutflow()
self.writer.close()