本文整理匯總了Python中configuration.Config.get_model方法的典型用法代碼示例。如果您正苦於以下問題:Python Config.get_model方法的具體用法?Python Config.get_model怎麽用?Python Config.get_model使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類configuration.Config
的用法示例。
在下文中一共展示了Config.get_model方法的1個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: ImageSet
# 需要導入模塊: from configuration import Config [as 別名]
# 或者: from configuration.Config import get_model [as 別名]
'''====================================Train and test================================================'''
data_set = ImageSet(training_data_path= config.project.train_img_folder_path,
testing_data_path= config.project.test_img_folder_path,
mean_image_file_name= config.data.mean_image_file_name,
driver_list_file= config.data.driver_list_file,
augmentation_postfix= config.data.augmentation_postfix,
fragment_size= config.data.fragment_size,
img_size= config.data.img_size,
validation_split= config.data.validation_split,
batch_size= config.data.batch_size,
class_num= config.data.class_num)
keras_extractor = KerasFeatureExtractor(model_name= config.nn.model_name,
data_set= data_set,
model_inference= config.get_model(),
model_arch_file= config.nn.model_arch_file_name,
model_weight_file= config.nn.model_weight_file_name,
feature_layer_index= config.feature.feature_layer_index,
feature_folder= config.feature.feature_folder
)
# training_feature_file_prefix= config.feature.training_feature_file_prefix,
# training_label_file_prefix= config.feature.training_label_file_prefix,
## training_feature_fragment_num= config.feature.training_feature_fragment_num,
# testing_feature_file_prefix= config.feature.testing_feature_file_prefix,
# testing_name_file_prefix= config.feature.testing_name_file_prefix,
## testing_feature_fragment_num= config.feature.testing_feature_fragment_num,
# validation_feature_file_prefix= config.feature.validation_feature_file_prefix,
# validation_label_file_prefix= config.feature.validation_label_file_prefix)
# validation_features_fragment_num= config.feature.validation_feature_fragment_num,)
#images = np.random.rand(32, 3, 224, 224)