當前位置: 首頁>>代碼示例>>Python>>正文


Python LOGGER.debug方法代碼示例

本文整理匯總了Python中config.LOGGER.debug方法的典型用法代碼示例。如果您正苦於以下問題:Python LOGGER.debug方法的具體用法?Python LOGGER.debug怎麽用?Python LOGGER.debug使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在config.LOGGER的用法示例。


在下文中一共展示了LOGGER.debug方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: feature_decomposition

# 需要導入模塊: from config import LOGGER [as 別名]
# 或者: from config.LOGGER import debug [as 別名]
def feature_decomposition(transformer, train_features, test_features):
    LOGGER.info("Beginning Dimensionality reduction using truncated SVD (%d features)" % transformer.n_components)
    train_dfeatures = transformer.fit_transform(train_features)
    #LOGGER.debug(["%6f " % transformer.explained_variance_ratio_[i] for i in range(5)])
    LOGGER.debug("%0.4f%% of total variance in %d features\n" % (
        100 * transformer.explained_variance_ratio_.sum(), transformer.n_components))
    return train_dfeatures, transformer.transform(test_features)
開發者ID:seanjh,項目名稱:NaiveBayes-MAHW3,代碼行數:9,代碼來源:problem5.py

示例2: prepare_features

# 需要導入模塊: from config import LOGGER [as 別名]
# 或者: from config.LOGGER import debug [as 別名]
def prepare_features(train_movies, test_movies):
    LOGGER.debug("Training samples: %d" % len(train_movies))
    # Extract
    vectorizer = CountVectorizer(decode_error=u'replace')
    (train_features, train_labels, test_features, test_labels) = feature_extraction_sklearn(
        vectorizer, train_movies, test_movies
    )
    LOGGER.debug("Original feature vectors size: %d" % csr_matrix(train_features[-1]).toarray().size)
    return train_features, train_labels, test_features, test_labels
開發者ID:seanjh,項目名稱:NaiveBayes-MAHW3,代碼行數:11,代碼來源:problem5.py

示例3: add_good

# 需要導入模塊: from config import LOGGER [as 別名]
# 或者: from config.LOGGER import debug [as 別名]
def add_good(user, password, data, opener):
    LOGGER.info('!!Found good: %r %r', user, password)
    with kLock:
        known_users.add(user)
    try:
        acc_data = account_data(user, password, data, opener)
        GOOD.put(acc_data)
    except ValueError:
        LOGGER.error('Error adding %r %r', user, password)
        LOGGER.debug('%s', data)
開發者ID:Gifts,項目名稱:PhdaysSnatch,代碼行數:12,代碼來源:misc.py

示例4: decompose_tsvd_target

# 需要導入模塊: from config import LOGGER [as 別名]
# 或者: from config.LOGGER import debug [as 別名]
def decompose_tsvd_target(transformer, train_features, test_features, target_cuml_var_ratio=0.9):
    LOGGER.info("Aiming for %.3f%% cumulative total sum of variance" % (target_cuml_var_ratio * 100))
    #transformer = TruncatedSVD(n_components=n_features)
    train_d, test_d = feature_decomposition(transformer, train_features, test_features)
    if sum(transformer.explained_variance_ratio_) < target_cuml_var_ratio:
        return decompose_tsvd_target(
            TruncatedSVD(n_components=(transformer.n_components*2)),
            train_features, test_features,
            target_cuml_var_ratio)
    LOGGER.debug("Reduced feature vectors size: %d" % csr_matrix(train_features[-1]).toarray().size)
    return transformer, train_d, test_d
開發者ID:seanjh,項目名稱:NaiveBayes-MAHW3,代碼行數:13,代碼來源:problem5.py

示例5: do_otp

# 需要導入模塊: from config import LOGGER [as 別名]
# 或者: from config.LOGGER import debug [as 別名]
    def do_otp(self, obj):
        data = self._pre_otp(obj)
        if data is False:
            return False

        step3 = urllib2.Request('http://{0}/transaction.php'.format(TARGET_HOST),
            urllib.urlencode({
                'step': 'step3'
            })
        )
        step4 = urllib2.Request('http://{0}/transaction.php'.format(TARGET_HOST),
            urllib.urlencode({
                'step': 'step4'
            })
        )
        # Case:
        # 1) No otp
        if 'Commit transaction.' in data:
            LOGGER.info('No otp')
            data = my_url_open(obj.opener, step3)
        # 2) SmartCard otp
        elif 'One-time password:' in data:
            LOGGER.info('Smart card otp')

            data = my_url_open(obj.opener, step4)
        # 3) Brute otp
        elif 'One-time password (#' in data:
            tmp_ticket = RE_TICKET.search(data)
            if not tmp_ticket:
                return False
            tmp_ticket = tmp_ticket.group(1)
            step_OTP1 = urllib2.Request('http://{0}/transaction.php'.format(TARGET_HOST),
                urllib.urlencode({
                    'step': 'step3',
                    'OTP': obj.gen_otp(tmp_ticket, 2)
                })
            )
            step_OTP2 = urllib2.Request('http://{0}/transaction.php'.format(TARGET_HOST),
                urllib.urlencode({
                    'step': 'step3',
                    'OTP': obj.gen_otp(tmp_ticket, 3)
                })
            )
            data = my_url_open(obj.opener, step_OTP1)
            data += my_url_open(obj.opener, step_OTP2)
            data = my_url_open(obj.opener, step4)
        else:
            LOGGER.error('Bad transaction page: ')
            LOGGER.debug('%r', data)
        result = 'Transaction committed!' in data
        if result:
            LOGGER.info('Transaction from: %s', obj.number)
        return result
開發者ID:Gifts,項目名稱:PhdaysSnatch,代碼行數:55,代碼來源:misc.py

示例6: five_ab

# 需要導入模塊: from config import LOGGER [as 別名]
# 或者: from config.LOGGER import debug [as 別名]
def five_ab(train_features, train_labels, test_features, test_labels):
    # Reduce feature dimensions
    transformer = TruncatedSVD(n_components=N_FEATURES)
    transformer, train_features, test_features = decompose_tsvd_target(
        transformer, train_features, test_features, TARGET_CUM_VAR_RATIO
    )
    #train_features, test_features = feature_decomposition(transformer, train_features, test_features)
    LOGGER.debug("Reduced feature vectors size: %d" % csr_matrix(train_features[-1]).toarray().size)

    # Rescale features
    train_features, test_features = rescale_features(train_features, test_features)
    return train_features, train_labels, test_features, test_labels
開發者ID:seanjh,項目名稱:NaiveBayes-MAHW3,代碼行數:14,代碼來源:problem5.py

示例7: run

# 需要導入模塊: from config import LOGGER [as 別名]
# 或者: from config.LOGGER import debug [as 別名]
 def run(self):
     LOGGER.info('Run numeric login-password generator')
     for user in self.users_list:
         account_password_queue.put((user, sha1('{0}|hekked'.format(user)).hexdigest()))
         RECOVER.put(str(user))
         for password in self.passwords_list:
             if user in known_users:
                 break
             LOGGER.debug('Add in queue: %s:%s', user, password)
             while 1:
                 try:
                     account_password_queue.put((user, password), block=1, timeout=1)
                     break
                 except Queue.Full:
                     LOGGER.error('account_password queue full!')
                     pass
開發者ID:Gifts,項目名稱:PhdaysSnatch,代碼行數:18,代碼來源:generators.py

示例8: five_f

# 需要導入模塊: from config import LOGGER [as 別名]
# 或者: from config.LOGGER import debug [as 別名]
def five_f(train_features, train_labels, test_features, test_labels):
    n_features = [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024]
    accuracy = []
    # Classify with different feature subsets
    for num in n_features:
        transformer = TruncatedSVD(n_components=num)
        d_train_feat, d_test_feat = feature_decomposition(transformer, train_features, test_features)
        d_train_feat, d_test_feat = rescale_features(d_train_feat, d_test_feat)
        results = classify(LogisticRegression(),
                           d_train_feat, train_labels, d_test_feat, test_labels,
                           "Logistic Regression classification - TSVD to %d features" % transformer.n_components)
        accuracy.append(get_correct_num(results, test_labels) / len(test_labels))

    # Classify with the full feature set
    total_features = csr_matrix(train_features[-1]).toarray().size
    n_features.append(total_features)
    results = classify(LogisticRegression(),
                       train_features, train_labels, test_features, test_labels,
                       "Logistic Regression classification - All %d features" % total_features)
    accuracy.append(get_correct_num(results, test_labels) / len(test_labels))

    LOGGER.debug(["%d: %.4f%%" % (n_features[i], accuracy[i] * 100) for i in range(len(n_features))])
    plot_feature_decomposition(n_features, accuracy)
開發者ID:seanjh,項目名稱:NaiveBayes-MAHW3,代碼行數:25,代碼來源:problem5.py

示例9: xrange

# 需要導入模塊: from config import LOGGER [as 別名]
# 或者: from config.LOGGER import debug [as 別名]
                RaceObject.set_obj(obj)
                with RaceObject.RaceLock:
                    RaceObject.RaceLock.notify()
                    RaceObject.RaceLock.wait()

            time.sleep(0.05)

for i in xrange(1):
    protect = Protector(DUPE_GOLD)
    protect.start()
gen = Generator()
gen.start()

gen = Generator_enemy()
gen.start()
LOGGER.debug('Generators started')

if True:
    for i in xrange(3):
        brute = Bruter()
        brute.start()

    for i in xrange(1):
        steal = Stealer()
        steal.start()

    for i in xrange(1):
        change = Changer()
        change.start()

    for i in xrange(1): # TODO: Conflicts with stealer, can be just nullified
開發者ID:Gifts,項目名稱:PhdaysSnatch,代碼行數:33,代碼來源:main.py


注:本文中的config.LOGGER.debug方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。