本文整理匯總了Python中composes.semantic_space.space.Space類的典型用法代碼示例。如果您正苦於以下問題:Python Space類的具體用法?Python Space怎麽用?Python Space使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
在下文中一共展示了Space類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: train_from_core
def train_from_core(lexical_space_file, an_dn_file, pn_file, sv_file, vo_file, output_file_prefix):
if (not exists(lexical_space_file) or not exists(pn_file) or not exists(sv_file)
or not exists(vo_file) or not exists(an_dn_file)):
print "some file doesn't exist"
print lexical_space_file, an_dn_file, pn_file, sv_file, vo_file
print "load core"
core_space = Space.build(data=lexical_space_file, format="dm")
print "load an dn"
an_dn_space = Space.build(data=an_dn_file, format="dm")
print "load pn"
pn_space = Space.build(data=pn_file, format="dm")
print "load sv"
sv_space = Space.build(data=sv_file, format="dm")
print "load vo"
vo_space = Space.build(data=vo_file, format="dm")
print "start training"
all_mat_space_normed = train_all_spaces(core_space, an_dn_space,
pn_space, sv_space, vo_space)
print "exporting trained file"
all_mat_space_normed.export(output_file_prefix, format="dm")
del all_mat_space_normed
print "DONE"
示例2: eval_on_file
def eval_on_file(path_composed_emb, path_observed_emb, save_path):
raw_observed_space = Space.build(data=path_observed_emb, format='dm')
observed_space = raw_observed_space.apply(RowNormalization('length'))
observed_words = observed_space.get_id2row()
print("Observed words, size: " + str(len(observed_words)) + ", first:")
print(observed_words[:10])
observed_words_set = set(observed_words)
raw_composed_space = Space.build(data=path_composed_emb, format='dm')
composed_space = raw_composed_space.apply(RowNormalization('length'))
composed_words = composed_space.get_id2row()
print("Composed words, size: " + str(len(composed_words)) + ", first:")
print(composed_words[:10])
# all composed words should be in the initial space
for idx, word in enumerate(composed_words):
assert(word in observed_words_set)
q1, q2, q3, ranks = evaluateRank(composed_words, composed_space, observed_space)
print("Q1: " + str(q1) + ", Q2: " + str(q2) + ", Q3: " + str(q3))
printDictToFile(ranks, save_path + '_rankedCompounds.txt')
sortedRanks = sorted(ranks.values())
printListToFile(sortedRanks, save_path + '_ranks.txt')
logResult(q1, q2, q3, save_path + '_quartiles.txt')
return q1,q2,q3,ranks
示例3: test_simple_dense
def test_simple_dense(self):
bcs.main(["build_core_space.py",
"-l", self.dir_ + "log1.txt",
"-i", self.dir_ + "mat2",
"-o", self.dir_,
"--input_format", "dm",
"--output_format", "dm"
])
s1 = Space.build(data = self.dir_ + "mat2.dm", format = "dm")
s2 = Space.build(data = self.dir_ + "CORE_SS.mat2.dm", format="dm")
s3 = io_utils.load(self.dir_ + "CORE_SS.mat2.pkl", Space)
self._test_equal_spaces_dense(s1, s2)
self._test_equal_spaces_dense(s1, s3)
bcs.main(["build_core_space.py",
"-l", self.dir_ + "log1.txt",
"-i", self.dir_ + "CORE_SS.mat2",
"-o", self.dir_,
"--input_format", "pkl",
"--output_format", "dm"
])
s1 = io_utils.load(self.dir_ + "CORE_SS.CORE_SS.mat2.pkl", Space)
s3 = io_utils.load(self.dir_ + "CORE_SS.mat2.pkl", Space)
self._test_equal_spaces_dense(s1, s3)
示例4: test_simple_sparse_zipped
def test_simple_sparse_zipped(self):
bcs.main(["build_core_space.py",
"-l", self.dir_ + "log1.txt",
"-i", self.dir_ + "mat1",
"-o", self.dir_,
"--input_format", "sm",
"--output_format", "sm",
"--gz", "True"
])
s1 = Space.build(data=self.dir_ + "mat1.sm.gz",
cols= self.dir_ + "mat1.cols",
format = "sm")
s2 = Space.build(data=self.dir_ + "CORE_SS.mat1.sm",
cols=self.dir_ + "CORE_SS.mat1.cols",
format="sm")
s3 = io_utils.load(self.dir_ + "CORE_SS.mat1.pkl", Space)
s4 = Space.build(data=self.dir_ + "mat1.sm",
cols= self.dir_ + "mat1.cols",
format = "sm")
self._test_equal_spaces_sparse(s1, s2)
self._test_equal_spaces_sparse(s1, s3)
self._test_equal_spaces_sparse(s1, s4)
示例5: test_build_data
def test_build_data(self):
test_cases = [("data1",["red", "blue"], ["car", "man"],
np.mat([[3,5],[0,10]]), np.mat([[3,5],[0,10]])),
("data2",["red"], ["car"],
np.mat([[3]]), np.mat([[3]])),
("data3",["red", "blue"], ["car", "man"],
np.mat([[15,0],[0,6]]), np.mat([[5,0],[0,6]])),
("data7",["red"], ["car"], np.mat([[0]]), np.mat([[0]])),
("data9",["man"], ["car"], np.mat([[4]]), None),
]
for data_file, rows, cols, smat, dmat in test_cases:
data_file1 = self.dir_ + data_file + ".sparse"
sp = Space.build(data=data_file1,
cols= self.dir_ + data_file + ".cols",
format="sm")
self.assertListEqual(rows, sp.id2row)
self.assertListEqual(cols, sp.id2column)
self.assertIsInstance(sp.cooccurrence_matrix, SparseMatrix)
np.testing.assert_array_equal(smat,
sp.cooccurrence_matrix.mat.todense())
data_file2 = self.dir_ + data_file + ".dense"
if not dmat is None:
sp = Space.build(data=data_file2, format="dm")
self.assertListEqual(rows, sp.id2row)
self.assertListEqual([], sp.id2column)
self.assertIsInstance(sp.cooccurrence_matrix, DenseMatrix)
np.testing.assert_array_equal(dmat, sp.cooccurrence_matrix.mat)
示例6: test_as_conversion_tool
def test_as_conversion_tool(self):
bcs.main(["build_core_space.py",
"-i", self.dir_ + "mat3",
"-o", self.dir_,
"--input_format", "sm",
"--output_format", "sm"
])
s1 = Space.build(data=self.dir_ + "mat3.sm",
cols= self.dir_ + "mat3.cols",
format = "sm")
s2 = Space.build(data=self.dir_ + "CORE_SS.mat3.sm",
rows=self.dir_ + "CORE_SS.mat3.rows",
cols=self.dir_ + "CORE_SS.mat3.cols",
format="sm")
s3 = io_utils.load(self.dir_ + "CORE_SS.mat3.pkl", Space)
self._test_equal_spaces_sparse(s1, s2)
self._test_equal_spaces_sparse(s1, s3)
bcs.main(["build_core_space.py",
"-i", self.dir_ + "mat3",
"-o", self.dir_,
"--input_format", "sm",
"--output_format", "dm"
])
s1 = Space.build(data=self.dir_ + "mat3.dm",
cols=self.dir_ + "CORE_SS.mat3.cols",
format = "dm")
s2 = Space.build(data=self.dir_ + "CORE_SS.mat3.dm",
rows=self.dir_ + "CORE_SS.mat3.rows",
cols=self.dir_ + "CORE_SS.mat3.cols",
format = "dm")
s3 = io_utils.load(self.dir_ + "CORE_SS.mat3.pkl", Space)
self._test_equal_spaces_dense(s1, s2)
s3.to_dense()
self._test_equal_spaces_dense(s1, s3)
bcs.main(["build_core_space.py",
"-i", self.dir_ + "mat3",
"-o", self.dir_,
"--input_format", "dm",
"--output_format", "dm"
])
s1 = Space.build(data=self.dir_ + "CORE_SS.mat3.dm",
cols=self.dir_ + "CORE_SS.mat3.cols",
format = "dm")
s3 = io_utils.load(self.dir_ + "CORE_SS.mat3.pkl", Space)
s3.to_dense()
self._test_equal_spaces_dense(s1, s3)
示例7: test_simple_lstsq_no_inter
def test_simple_lstsq_no_inter(self):
tc.main(["train_composition.py",
"-l", self.dir_ + "log1.txt",
"-i", self.dir_ + "an_train_data.txt",
"-o", self.dir_,
"-m", "lexical_func",
"-p", self.dir_ + "CORE_SS.AN_mat.pkl",
"-a", self.dir_ + "CORE_SS.N_mat.pkl",
"-r", "lstsq",
"--intercept", "False",
"--export_params", "True"
])
trained = io_utils.load(self.dir_ + "TRAINED_COMP_MODEL.lexical_func.an_train_data.txt.pkl")
new_space = trained.function_space
np.testing.assert_array_almost_equal(new_space.cooccurrence_matrix.mat,
np.mat([1,0,0,1]), 10)
self.assertTupleEqual(new_space.element_shape, (2,2))
self.assertListEqual(new_space.id2row, ["big"])
self.assertListEqual(new_space.id2column, [])
a_space = Space.build(data=self.dir_ + "TRAINED_COMP_MODEL.lexical_func.an_train_data.txt.params.dm",
format="dm")
self._test_equal_spaces_dense(a_space, new_space)
tc.main(["train_composition.py",
"-l", self.dir_ + "log1.txt",
"-i", self.dir_ + "an_train_data.txt",
"-o", self.dir_,
"-m", "lexical_func",
"-p", self.dir_ + "CORE_SS.AN_mat.pkl",
"-a", self.dir_ + "CORE_SS.N_mat.pkl",
"-r", "ridge",
"--lambda", "0",
"--crossvalidation", "False",
"--intercept", "False",
"--export_params", "True"
])
trained = io_utils.load(self.dir_ + "TRAINED_COMP_MODEL.lexical_func.an_train_data.txt.pkl")
new_space2 = trained.function_space
np.testing.assert_array_almost_equal(new_space2.cooccurrence_matrix.mat,
np.mat([1,0,0,1]), 10)
self.assertTupleEqual(new_space2.element_shape, (2,2))
self.assertListEqual(new_space2.id2row, ["big"])
self.assertListEqual(new_space2.id2column, [])
a_space = Space.build(data=self.dir_ + "TRAINED_COMP_MODEL.lexical_func.an_train_data.txt.params.dm",
format="dm")
self._test_equal_spaces_dense(a_space, new_space2)
示例8: test_simple_ops
def test_simple_ops(self):
bcs.main(["build_core_space.py",
"-l", self.dir_ + "log1.txt",
"-i", self.dir_ + "mat3",
"-w", "raw",
"-s", "top_sum_3,top_length_3,top_sum_4",
"-r", "svd_2,svd_1",
"-o", self.dir_,
"--input_format", "dm",
"--output_format", "dm"
])
core_mats = ["CORE_SS.mat3.raw.top_sum_3.svd_2",
"CORE_SS.mat3.raw.top_sum_3.svd_1",
"CORE_SS.mat3.raw.top_length_3.svd_2",
"CORE_SS.mat3.raw.top_length_3.svd_1",
"CORE_SS.mat3.raw.top_sum_4.svd_2",
"CORE_SS.mat3.raw.top_sum_4.svd_1"
]
core_spaces = [Space.build(data=self.dir_ + suffix + ".dm", format="dm") for suffix in core_mats]
for i, core_mat in enumerate(core_mats):
bps.main(["build_peripheral_space.py",
"-l", self.dir_ + "log1.txt",
"-i", self.dir_ + "mat3",
"-o", self.dir_,
"-c", self.dir_ + core_mat + ".pkl",
"--input_format", "dm",
"--output_format", "dm"
])
s1 = core_spaces[i]
data_file = self.dir_ + "PER_SS.mat3." + core_mats[i] + ".dm"
s2 = Space.build(data=data_file, format="dm")
self._test_equal_spaces_dense(s1, s2)
bps.main(["build_peripheral_space.py",
"-l", self.dir_ + "log1.txt",
"-i", self.dir_ + "mat3",
"-o", self.dir_,
"-c", self.dir_ + core_mat + ".pkl",
"--input_format", "sm",
"--output_format", "dm"
])
s1 = core_spaces[i]
data_file = self.dir_ + "PER_SS.mat3." + core_mats[i] + ".dm"
s2 = Space.build(data=data_file, format="dm")
self._test_equal_spaces_dense(s1, s2)
示例9: test_simple_dense
def test_simple_dense(self):
bps.main(["build_peripheral_space.py",
"-l", self.dir_ + "log1.txt",
"-i", self.dir_ + "mat2",
"-o", self.dir_,
"-c", self.dir_ + "CORE_SS.mat2.pkl",
"--input_format", "dm",
"--output_format", "dm"
])
s1 = Space.build(data=self.dir_ + "mat2.dm", format="dm")
s2 = Space.build(data=self.dir_ + "PER_SS.mat2.CORE_SS.mat2.dm", format="dm")
self._test_equal_spaces_dense(s1, s2)
示例10: add_zero_idenity_matrix
def add_zero_idenity_matrix(matrix_space, vector_length):
zero_mat = np.zeros((1,vector_length * vector_length))
identity_mat = np.reshape(np.eye(vector_length),(1, vector_length * vector_length))
matrix = DenseMatrix(np.vstack([zero_mat, identity_mat]))
rows = ["cg.zeromat","cg.identmat"]
additional_space = Space(matrix, rows, [])
return Space.vstack(matrix_space, additional_space)
示例11: vstack
def vstack(s1, s2):
if not s1:
return s2
if not s2:
return s1
else:
return Space.vstack(s1, s2)
示例12: build_raw_per_space
def build_raw_per_space(in_file_prefix, in_format, is_gz):
if not in_format in ("sm", "dm", "pkl"):
raise ValueError("Invalid input format:%s" % in_format)
data_file = "%s.%s" % (in_file_prefix, in_format)
if in_format == "pkl":
space = io_utils.load(data_file, Space)
else:
if is_gz:
data_file = "%s.gz" % data_file
row_file = "%s.rows" % (in_file_prefix)
column_file = "%s.cols" % (in_file_prefix)
if not os.path.exists(row_file):
row_file = None
if not os.path.exists(column_file):
if in_format == "sm":
raise ValueError("Column file: %s needs to be provided!" % column_file)
column_file = None
print "Building matrix..."
space = Space.build(data=data_file, rows=row_file, cols=column_file, format=in_format)
return space
示例13: test_to_dissect_sparse_files
def test_to_dissect_sparse_files(vectors_c, tmpdir):
"""
:type vectors_c: Thesaurus
:type tmpdir: py.path.local
"""
from composes.semantic_space.space import Space
prefix = str(tmpdir.join('output'))
vectors_c.to_dissect_sparse_files(prefix)
# check that files are there
for suffix in ['sm', 'rows', 'cols']:
outfile = '{}.{}'.format(prefix, suffix)
assert os.path.exists(outfile)
assert os.path.isfile(outfile)
# check that reading the files in results in the same matrix
space = Space.build(data="{}.sm".format(prefix),
rows="{}.rows".format(prefix),
cols="{}.cols".format(prefix),
format="sm")
matrix, rows, cols = space.cooccurrence_matrix.mat, space.id2row, space.id2column
exp_matrix, exp_cols, exp_rows = vectors_c.to_sparse_matrix()
assert exp_cols == cols
assert exp_rows == rows
assert_array_equal(exp_matrix.A, matrix.A)
_assert_matrix_of_thesaurus_c_is_as_expected(matrix.A, rows, cols)
_assert_matrix_of_thesaurus_c_is_as_expected(exp_matrix.A, exp_rows, exp_cols)
示例14: setUp
def setUp(self):
self.dir_ = data_dir + "/space_test_resources/"
self.init_test_cases = [(DenseMatrix(np.array([[1,2],[3,4]])),
["car", "man"],
["feat1", "feat2"],
{"man":1, "car":0},
{"feat1":0, "feat2":1},
[ScalingOperation(EpmiWeighting())]),
(DenseMatrix(np.array([[1,2],[3,4]])),
["car", "man"],
[],
{"man":1, "car":0},
{},
[ScalingOperation(EpmiWeighting())])]
self.m1 = np.array([[1,2,3]])
self.row1 = ["a"]
self.row2 = ["a", "b", "c"]
self.ft1 = ["f1","f2","f3"]
self.space1 = Space(DenseMatrix(self.m1),self.row1, self.ft1)
self.x = np.mat([[1,2,3],[2,4,6],[4,675,43]])
self.us = np.mat([[ 2.19272110e+00, 3.03174768e+00],
[ 4.38544220e+00, 6.06349536e+00],
[ 6.76369708e+02, -4.91431927e-02]])
self.space2 = Space(DenseMatrix(self.x), self.row2, self.ft1)
示例15: test_build_data_row_col
def test_build_data_row_col(self):
test_cases = [("data1", "row1.row", "col1.col", ["red"], ["man", "car"],
np.mat([[5,3]]), np.mat([[3,5]])),
("data1", "row1.row", "col5.col", ["red"], ["man", "car"],
np.mat([[5,3]]), np.mat([[3,5]])),
("data3", "row2.row", "col2.col", ["blue", "red"], ["car"],
np.mat([[0],[15]]), None),
("data2", "row1.row","col1.col", ["red"], ["man","car"],
np.mat([[0,3]]), None),
("data3", "row3.row", "col3.col", ["blue", "red"], ["man", "car"],
np.mat([[6,0],[0,15]]), np.mat([[0,6],[5,0]])),
("data7", "row2.row", "col3.col", ["blue", "red"], ["man", "car"],
np.mat([[0,0],[0,0]]), None),
("data3", "row2.row", "col4.col", ["blue", "red"], ["airplane"],
np.mat([[0],[0]]), None)
]
for data_file, row_file, col_file, rows, cols, smat, dmat in test_cases:
row_file = self.dir_ + row_file
col_file = self.dir_ + col_file
data_file1 = self.dir_ + data_file + ".sparse"
if smat is None:
self.assertRaises(ValueError, Space.build, data=data_file1, rows= row_file, cols=col_file, format="sm")
else:
sp = Space.build(data=data_file1, rows= row_file, cols=col_file, format="sm")
self.assertListEqual(rows, sp.id2row)
self.assertListEqual(cols, sp.id2column)
self.assertIsInstance(sp.cooccurrence_matrix, SparseMatrix)
np.testing.assert_array_equal(smat,
sp.cooccurrence_matrix.mat.todense())
data_file2 = self.dir_ + data_file + ".dense"
if dmat is None:
self.assertRaises(ValueError, Space.build, data=data_file2, rows= row_file, cols=col_file, format="dm")
else:
sp = Space.build(data=data_file2, rows= row_file, cols=col_file, format="dm")
self.assertListEqual(rows, sp.id2row)
self.assertListEqual(cols, sp.id2column)
self.assertIsInstance(sp.cooccurrence_matrix, DenseMatrix)
np.testing.assert_array_equal(dmat, sp.cooccurrence_matrix.mat)