當前位置: 首頁>>代碼示例>>Python>>正文


Python LexicalFunction._MIN_SAMPLES方法代碼示例

本文整理匯總了Python中composes.composition.lexical_function.LexicalFunction._MIN_SAMPLES方法的典型用法代碼示例。如果您正苦於以下問題:Python LexicalFunction._MIN_SAMPLES方法的具體用法?Python LexicalFunction._MIN_SAMPLES怎麽用?Python LexicalFunction._MIN_SAMPLES使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在composes.composition.lexical_function.LexicalFunction的用法示例。


在下文中一共展示了LexicalFunction._MIN_SAMPLES方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_simple_train_compose_intercept

# 需要導入模塊: from composes.composition.lexical_function import LexicalFunction [as 別名]
# 或者: from composes.composition.lexical_function.LexicalFunction import _MIN_SAMPLES [as 別名]
    def test_simple_train_compose_intercept(self):

        #TODO test a1_car twice in the phrase list
        train_data = [("a1", "car", "a1_car"),
                      ("a1", "man", "a1_man"),
                      ]
        #model with train and then compose
        learner_ = LstsqRegressionLearner(intercept=True)
        model = LexicalFunction(learner=learner_)
        model._MIN_SAMPLES = 1

        model.train(train_data, self.n_space, self.an_space)

        new_space = model.function_space

        np.testing.assert_array_almost_equal(new_space.cooccurrence_matrix.mat,
                                             np.mat([[0.66666667,0.33333333,
                                                      -0.33333333,0.33333333,
                                                      0.66666667,0.33333333]]),
                                              7)

        self.assertTupleEqual(new_space.element_shape, (2,3))
        self.assertListEqual(new_space.id2row, ["a1"])
        self.assertListEqual(new_space.id2column, [])

        comp_space = model.compose(train_data, self.n_space)

        np.testing.assert_array_almost_equal(comp_space.cooccurrence_matrix.mat,
                                self.an_space.cooccurrence_matrix.mat, 10
                                )

        self.assertListEqual(comp_space.id2row, ["a1_car", "a1_man"])
        self.assertListEqual(comp_space.id2column, self.ft)

        #new model, without training
        model2 = LexicalFunction(function_space=new_space, intercept=True)
        model2._MIN_SAMPLES = 1
        comp_space = model2.compose(train_data, self.n_space)

        self.assertListEqual(comp_space.id2row, ["a1_car", "a1_man"])
        self.assertListEqual(comp_space.id2column, [])
        np.testing.assert_array_almost_equal(comp_space.cooccurrence_matrix.mat,
                                             self.n_space.cooccurrence_matrix.mat,
                                             8)
        #recursive application
        comp_space2 = model2.compose([("a1", "a1_car", "a1_a1_car"),
                                      ("a1", "a1_man", "a1_a1_man")],
                                     comp_space)

        self.assertListEqual(comp_space2.id2row, ["a1_a1_car", "a1_a1_man"])
        self.assertListEqual(comp_space.id2column, [])

        np.testing.assert_array_almost_equal(comp_space2.cooccurrence_matrix.mat,
                                             self.n_space.cooccurrence_matrix.mat,
                                             8)
        self.assertEqual(comp_space.element_shape, (2,))
        self.assertEqual(comp_space2.element_shape, (2,))
開發者ID:dimazest,項目名稱:dissect,代碼行數:59,代碼來源:lexical_function_test.py

示例2: test_train_intercept

# 需要導入模塊: from composes.composition.lexical_function import LexicalFunction [as 別名]
# 或者: from composes.composition.lexical_function.LexicalFunction import _MIN_SAMPLES [as 別名]
    def test_train_intercept(self):

        a1_mat = DenseMatrix(np.mat([[3,4],[5,6]]))
        a2_mat = DenseMatrix(np.mat([[1,2],[3,4]]))

        train_data = [("a1", "man", "a1_man"),
                      ("a2", "car", "a2_car"),
                      ("a1", "boy", "a1_boy"),
                      ("a2", "boy", "a2_boy")
                      ]

        n_mat = DenseMatrix(np.mat([[13,21],[3,4],[5,6]]))
        n_space = Space(n_mat, ["man", "car", "boy"], self.ft)

        an1_mat = (a1_mat * n_mat.transpose()).transpose()
        an2_mat = (a2_mat * n_mat.transpose()).transpose()
        an_mat = an1_mat.vstack(an2_mat)

        an_space = Space(an_mat, ["a1_man","a1_car","a1_boy","a2_man","a2_car","a2_boy"], self.ft)

        #test train
        model = LexicalFunction(learner=LstsqRegressionLearner(intercept=True))
        model._MIN_SAMPLES = 1
        model.train(train_data, n_space, an_space)
        a_space = model.function_space

        a1_mat.reshape((1,4))
        #np.testing.assert_array_almost_equal(a1_mat.mat,
        #                                     a_space.cooccurrence_matrix.mat[0])

        a2_mat.reshape((1,4))
        #np.testing.assert_array_almost_equal(a2_mat.mat,
        #                                     a_space.cooccurrence_matrix.mat[1])

        self.assertListEqual(a_space.id2row, ["a1", "a2"])
        self.assertTupleEqual(a_space.element_shape, (2,3))

        #test compose
        a1_mat = DenseMatrix(np.mat([[3,4,5,6]]))
        a2_mat = DenseMatrix(np.mat([[1,2,3,4]]))
        a_mat = a_space.cooccurrence_matrix

        a_space = Space(a_mat, ["a1", "a2"], [], element_shape=(2,3))
        model = LexicalFunction(function_space=a_space, intercept=True)
        model._MIN_SAMPLES = 1
        comp_space = model.compose(train_data, n_space)

        self.assertListEqual(comp_space.id2row, ["a1_man", "a2_car", "a1_boy", "a2_boy"])
        self.assertListEqual(comp_space.id2column, [])

        self.assertEqual(comp_space.element_shape, (2,))

        np.testing.assert_array_almost_equal(comp_space.cooccurrence_matrix.mat,
                                             an_mat[[0,4,2,5]].mat, 8)
開發者ID:dimazest,項目名稱:dissect,代碼行數:56,代碼來源:lexical_function_test.py

示例3: test_min_samples1

# 需要導入模塊: from composes.composition.lexical_function import LexicalFunction [as 別名]
# 或者: from composes.composition.lexical_function.LexicalFunction import _MIN_SAMPLES [as 別名]
    def test_min_samples1(self):

        #TODO test a1_car twice in the phrase list
        train_data = [("bla3", "man", "a1_car"),
                      ("a1", "car", "a1_car"),
                      ("bla2", "man", "a1_car"),
                      ("a1", "man", "a1_man"),
                      ("bla1", "man", "a1_car")
                      ]
        #model with train and then compose
        learner_ = LstsqRegressionLearner(intercept=True)
        model = LexicalFunction(learner=learner_)
        model._MIN_SAMPLES = 2

        model.train(train_data, self.n_space, self.an_space)

        new_space = model.function_space

        np.testing.assert_array_almost_equal(new_space.cooccurrence_matrix.mat,
                                             np.mat([[0.66666667,0.33333333,
                                                      -0.33333333,0.33333333,
                                                      0.66666667,0.33333333]]),
                                              7)

        self.assertTupleEqual(new_space.element_shape, (2,3))
        self.assertListEqual(new_space.id2row, ["a1"])
        self.assertListEqual(new_space.id2column, [])
開發者ID:dimazest,項目名稱:dissect,代碼行數:29,代碼來源:lexical_function_test.py

示例4: test_min_samples2

# 需要導入模塊: from composes.composition.lexical_function import LexicalFunction [as 別名]
# 或者: from composes.composition.lexical_function.LexicalFunction import _MIN_SAMPLES [as 別名]
    def test_min_samples2(self):
        train_data = [("a1", "man", "bla"),
                      ("a1", "car", "a1_car"),
                      ("a1", "man", "bla"),
                      ("a1", "man", "a1_man"),
                      ("a1", "bla", "a1_man"),
                      ("a1", "man", "bla")
                      ]

        model = LexicalFunction()
        model._MIN_SAMPLES = 5

        self.assertRaises(ValueError, model.train, train_data, self.n_space, self.an_space)
開發者ID:dimazest,項目名稱:dissect,代碼行數:15,代碼來源:lexical_function_test.py

示例5: test_lexical_function

# 需要導入模塊: from composes.composition.lexical_function import LexicalFunction [as 別名]
# 或者: from composes.composition.lexical_function.LexicalFunction import _MIN_SAMPLES [as 別名]
 def test_lexical_function(self):
     
     self.m12 = DenseMatrix(np.mat([[3,1],[9,2]]))
     self.m22 = DenseMatrix(np.mat([[4,3],[2,1]]))
     self.ph2 = DenseMatrix(np.mat([[18,11],[24,7]]))
     self.row = ["a", "b"]
     self.ft = ["f1","f2"]
     self.space1 = Space(DenseMatrix(self.m12), self.row, self.ft)
     self.space2 = Space(DenseMatrix(self.ph2), ["a_a","a_b"], self.ft)
     m = LexicalFunction()
     m._MIN_SAMPLES = 1
     self.assertRaises(IllegalStateError, m.export, self.prefix + ".lf1")
     m.train([("a","b","a_b"),("a","a","a_a")], self.space1, self.space2)
     m.export(self.prefix + ".lf2")
開發者ID:georgiana-dinu,項目名稱:dissect,代碼行數:16,代碼來源:model_export_test.py

示例6: test_3d

# 需要導入模塊: from composes.composition.lexical_function import LexicalFunction [as 別名]
# 或者: from composes.composition.lexical_function.LexicalFunction import _MIN_SAMPLES [as 別名]
    def test_3d(self):

        # setting up
        v_mat = DenseMatrix(np.mat([[0,0,1,1,2,2,3,3],#hate
                                    [0,1,2,4,5,6,8,9]])) #love


        vo11_mat = DenseMatrix(np.mat([[0,11],[22,33]])) #hate boy
        vo12_mat = DenseMatrix(np.mat([[0,7],[14,21]])) #hate man
        vo21_mat = DenseMatrix(np.mat([[6,34],[61,94]])) #love boy
        vo22_mat = DenseMatrix(np.mat([[2,10],[17,26]])) #love car

        train_vo_data = [("hate_boy", "man", "man_hate_boy"),
                      ("hate_man", "man", "man_hate_man"),
                      ("hate_boy", "boy", "boy_hate_boy"),
                      ("hate_man", "boy", "boy_hate_man"),
                      ("love_car", "boy", "boy_love_car"),
                      ("love_boy", "man", "man_love_boy"),
                      ("love_boy", "boy", "boy_love_boy"),
                      ("love_car", "man", "man_love_car")
                      ]

        # if do not find a phrase
        # what to do?
        train_v_data = [("love", "boy", "love_boy"),
                        ("hate", "man", "hate_man"),
                        ("hate", "boy", "hate_boy"),
                        ("love", "car", "love_car")]


        sentences = ["man_hate_boy", "car_hate_boy", "boy_hate_boy",
                     "man_hate_man", "car_hate_man", "boy_hate_man",
                     "man_love_boy", "car_love_boy", "boy_love_boy",
                     "man_love_car", "car_love_car", "boy_love_car" ]
        n_mat = DenseMatrix(np.mat([[3,4],[1,2],[5,6]]))


        n_space = Space(n_mat, ["man", "car", "boy"], self.ft)

        s1_mat = (vo11_mat * n_mat.transpose()).transpose()
        s2_mat = (vo12_mat * n_mat.transpose()).transpose()
        s3_mat = (vo21_mat * n_mat.transpose()).transpose()
        s4_mat = (vo22_mat * n_mat.transpose()).transpose()

        s_mat = vo11_mat.nary_vstack([s1_mat,s2_mat,s3_mat,s4_mat])
        s_space = Space(s_mat, sentences, self.ft)

        #test train 2d
        model = LexicalFunction(learner=LstsqRegressionLearner(intercept=False))
        model._MIN_SAMPLES = 1
        model.train(train_vo_data, n_space, s_space)
        vo_space = model.function_space

        self.assertListEqual(vo_space.id2row, ["hate_boy", "hate_man","love_boy", "love_car"])
        self.assertTupleEqual(vo_space.element_shape, (2,2))
        vo11_mat.reshape((1,4))
        np.testing.assert_array_almost_equal(vo11_mat.mat,
                                             vo_space.cooccurrence_matrix.mat[0])
        vo12_mat.reshape((1,4))
        np.testing.assert_array_almost_equal(vo12_mat.mat,
                                             vo_space.cooccurrence_matrix.mat[1])
        vo21_mat.reshape((1,4))
        np.testing.assert_array_almost_equal(vo21_mat.mat,
                                             vo_space.cooccurrence_matrix.mat[2])
        vo22_mat.reshape((1,4))
        np.testing.assert_array_almost_equal(vo22_mat.mat,
                                             vo_space.cooccurrence_matrix.mat[3])

        # test train 3d
        model2 = LexicalFunction(learner=LstsqRegressionLearner(intercept=False))
        model2._MIN_SAMPLES = 1
        model2.train(train_v_data, n_space, vo_space)
        v_space = model2.function_space
        np.testing.assert_array_almost_equal(v_mat.mat,
                                             v_space.cooccurrence_matrix.mat)
        self.assertListEqual(v_space.id2row, ["hate","love"])
        self.assertTupleEqual(v_space.element_shape, (2,2,2))

        # test compose 3d
        vo_space2 = model2.compose(train_v_data, n_space)
        id2row1 = list(vo_space.id2row)
        id2row2 = list(vo_space2.id2row)
        id2row2.sort()
        self.assertListEqual(id2row1, id2row2)
        row_list = vo_space.id2row
        vo_rows1 = vo_space.get_rows(row_list)
        vo_rows2 = vo_space2.get_rows(row_list)
        np.testing.assert_array_almost_equal(vo_rows1.mat, vo_rows2.mat,7)
        self.assertTupleEqual(vo_space.element_shape, vo_space2.element_shape)
開發者ID:dimazest,項目名稱:dissect,代碼行數:91,代碼來源:lexical_function_test.py

示例7: test_simple_3d_intercept

# 需要導入模塊: from composes.composition.lexical_function import LexicalFunction [as 別名]
# 或者: from composes.composition.lexical_function.LexicalFunction import _MIN_SAMPLES [as 別名]
    def test_simple_3d_intercept(self):

        train_data1 = [("drive_car", "I", "I_drive_car"),
                       ("read_man", "You", "You_read_man"),
                       ("read_man", "I", "I_read_man"),
                       ("drive_car", "You", "You_drive_car"),
                       ("drive_man", "You", "You_drive_man"),
                       ("drive_man", "I", "I_drive_man")
                       ]

        train_data2 = [("drive", "car", "drive_car"),
                       ("drive", "man", "drive_man"),
                       ]

        n_mat = DenseMatrix(np.mat([[1,2],[3,4],[5,6],[7,8]]))
        svo_mat = DenseMatrix(np.mat([[1,2],[3,4],[1,2],[3,4],[3,4],[1,2]]))

        n_space = Space(n_mat,["I", "You", "man", "car"],[])
        svo_space = Space(svo_mat,["I_drive_car","You_read_man",
                                 "I_read_man", "You_drive_car",
                                 "You_drive_man", "I_drive_man"],["f1","f2"])

        #test first stage train
        model = LexicalFunction(learner=LstsqRegressionLearner(intercept=True))
        model._MIN_SAMPLES = 1
        model.train(train_data1, n_space, svo_space)
        vo_space = model.function_space

        np.testing.assert_array_almost_equal(vo_space.cooccurrence_matrix.mat,
                                            np.mat([[0.6666,0.3333,-0.3333,
                                                     0.3333,0.6666,0.3333],
                                                    [0.6666,0.3333,-0.3333,
                                                     0.3333,0.6666,0.3333],
                                                    [0.6666,0.3333,-0.3333,
                                                     0.3333,0.6666,0.3333]]),
                                             4)

        self.assertTupleEqual(vo_space.element_shape, (2,3))
        self.assertListEqual(vo_space.id2row, ["drive_car","drive_man","read_man"])
        self.assertListEqual(vo_space.id2column, [])

        #test first stage compose
        comp_space = model.compose([train_data1[0]], n_space)
        np.testing.assert_array_almost_equal(comp_space.cooccurrence_matrix.mat,
                                             np.mat([[1,2]]), 8)

        self.assertTupleEqual(comp_space.element_shape, (2,))
        self.assertListEqual(comp_space.id2row, ["I_drive_car"])
        self.assertListEqual(comp_space.id2column, ["f1","f2"])

        #test second stage train
        model = LexicalFunction(learner=LstsqRegressionLearner(intercept=True))
        model._MIN_SAMPLES = 1
        model.train(train_data2, n_space, vo_space)
        v_space = model.function_space

        np.testing.assert_array_almost_equal(v_space.cooccurrence_matrix.mat,
                                             np.mat([[-0.2222,0.2222,0.4444,
                                                      -0.1111,0.1111,0.2222,
                                                       0.1111,-0.1111,-0.2222,
                                                       -0.1111,0.1111,0.2222,
                                                       -0.2222,0.2222,0.4444,
                                                       -0.1111,0.1111,0.2222]]),
                                              4)

        self.assertTupleEqual(v_space.element_shape, (2,3,3))
        self.assertListEqual(v_space.id2row, ["drive"])
        self.assertListEqual(v_space.id2column, [])

        #test compose1
        comp_space = model.compose([train_data2[0]], n_space)
        np.testing.assert_array_almost_equal(comp_space.cooccurrence_matrix.mat,
                                             np.mat([[0.6666,0.3333,-0.3333,
                                                     0.3333,0.6666,0.3333]]), 4)

        self.assertTupleEqual(comp_space.element_shape, (2,3))
        self.assertListEqual(comp_space.id2row, ["drive_car"])
        self.assertListEqual(comp_space.id2column, [])


        #test compose2
        model2 = LexicalFunction(function_space=comp_space, intercept=True)
        model2._MIN_SAMPLES = 1
        comp_space2 = model2.compose([train_data1[0]], n_space)
        np.testing.assert_array_almost_equal(comp_space2.cooccurrence_matrix.mat,
                                             np.mat([[1,2]]), 8)

        self.assertTupleEqual(comp_space2.element_shape, (2,))
        self.assertListEqual(comp_space2.id2row, ["I_drive_car"])
        self.assertListEqual(comp_space2.id2column, [])

        #recursive application, write a wrapper around it!!!
        comp_space2 = model2.compose([("drive_car", "I", "I_drive_car")], n_space)
        np.testing.assert_array_almost_equal(comp_space2.cooccurrence_matrix.mat,
                                             np.mat([[1,2]]), 8)

        self.assertTupleEqual(comp_space2.element_shape, (2,))
        self.assertListEqual(comp_space2.id2row, ["I_drive_car"])
        self.assertListEqual(comp_space2.id2column, [])
開發者ID:dimazest,項目名稱:dissect,代碼行數:101,代碼來源:lexical_function_test.py


注:本文中的composes.composition.lexical_function.LexicalFunction._MIN_SAMPLES方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。