本文整理匯總了Python中compair.learning_records.resource_iri.ResourceIRI.answer_comment方法的典型用法代碼示例。如果您正苦於以下問題:Python ResourceIRI.answer_comment方法的具體用法?Python ResourceIRI.answer_comment怎麽用?Python ResourceIRI.answer_comment使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類compair.learning_records.resource_iri.ResourceIRI
的用法示例。
在下文中一共展示了ResourceIRI.answer_comment方法的2個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: answer_comment
# 需要導入模塊: from compair.learning_records.resource_iri import ResourceIRI [as 別名]
# 或者: from compair.learning_records.resource_iri.ResourceIRI import answer_comment [as 別名]
def answer_comment(cls, answer_comment):
activity = Activity(
id=ResourceIRI.answer_comment(answer_comment.course_uuid, answer_comment.assignment_uuid,
answer_comment.answer_uuid, answer_comment.uuid),
definition=ActivityDefinition(
type=XAPIActivity.activity_types.get('comment'),
name=LanguageMap({ 'en-US': "Assignment answer comment" }),
extensions=Extensions()
)
)
activity.definition.extensions['http://id.tincanapi.com/extension/type'] = answer_comment.comment_type.value
activity.definition.extensions['http://id.tincanapi.com/extension/isDraft'] = answer_comment.draft
return activity
示例2: answer_comment
# 需要導入模塊: from compair.learning_records.resource_iri import ResourceIRI [as 別名]
# 或者: from compair.learning_records.resource_iri.ResourceIRI import answer_comment [as 別名]
def answer_comment(cls, answer_comment):
#TODO: this isn't in the Caliper spec yet
return {
"id": ResourceIRI.answer_comment(answer_comment.course_uuid, answer_comment.assignment_uuid,
answer_comment.answer_uuid, answer_comment.uuid),
"type": "Comment",
"commenter": CaliperActor.generate_actor(answer_comment.user),
"commented": CaliperEntities.answer(answer_comment.answer),
"value": LearningRecord.trim_text_to_size_limit(answer_comment.content),
"dateCreated": answer_comment.created.replace(tzinfo=pytz.utc).isoformat(),
"dateModified": answer_comment.modified.replace(tzinfo=pytz.utc).isoformat(),
"extensions": {
"type": answer_comment.comment_type.value,
"isDraft": answer_comment.draft,
"characterCount": LearningRecord.character_count(answer_comment.content) if answer_comment.content else 0,
"wordCount": LearningRecord.word_count(answer_comment.content) if answer_comment.content else 0
}
}