本文整理匯總了Python中common.MemConfig.config_mem方法的典型用法代碼示例。如果您正苦於以下問題:Python MemConfig.config_mem方法的具體用法?Python MemConfig.config_mem怎麽用?Python MemConfig.config_mem使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類common.MemConfig
的用法示例。
在下文中一共展示了MemConfig.config_mem方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: create
# 需要導入模塊: from common import MemConfig [as 別名]
# 或者: from common.MemConfig import config_mem [as 別名]
def create(args):
''' Create and configure the system object. '''
system = SimpleSeSystem(args)
# Tell components about the expected physical memory ranges. This
# is, for example, used by the MemConfig helper to determine where
# to map DRAMs in the physical address space.
system.mem_ranges = [ AddrRange(start=0, size=args.mem_size) ]
# Configure the off-chip memory system.
MemConfig.config_mem(args, system)
# Parse the command line and get a list of Processes instances
# that we can pass to gem5.
processes = get_processes(args.commands_to_run)
if len(processes) != args.num_cores:
print("Error: Cannot map %d command(s) onto %d CPU(s)" %
(len(processes), args.num_cores))
sys.exit(1)
# Assign one workload to each CPU
for cpu, workload in zip(system.cpu_cluster.cpus, processes):
cpu.workload = workload
return system
示例2: build_system
# 需要導入模塊: from common import MemConfig [as 別名]
# 或者: from common.MemConfig import config_mem [as 別名]
def build_system(options):
# create the system we are going to simulate
system = System()
# use timing mode for the interaction between master-slave ports
system.mem_mode = 'timing'
# set the clock fequency of the system
clk = '100GHz'
vd = VoltageDomain(voltage='1V')
system.clk_domain = SrcClockDomain(clock=clk, voltage_domain=vd)
# add traffic generators to the system
system.tgen = [TrafficGen(config_file=options.tgen_cfg_file) for i in
range(options.num_tgen)]
# Config memory system with given HMC arch
MemConfig.config_mem(options, system)
# Connect the traffic generatiors
if options.arch == "distributed":
for i in range(options.num_tgen):
system.tgen[i].port = system.membus.slave
# connect the system port even if it is not used in this example
system.system_port = system.membus.slave
if options.arch == "mixed":
for i in range(int(options.num_tgen/2)):
system.tgen[i].port = system.membus.slave
hh = system.hmc_host
if options.enable_global_monitor:
system.tgen[2].port = hh.lmonitor[2].slave
hh.lmonitor[2].master = hh.seriallink[2].slave
system.tgen[3].port = hh.lmonitor[3].slave
hh.lmonitor[3].master = hh.seriallink[3].slave
else:
system.tgen[2].port = hh.seriallink[2].slave
system.tgen[3].port = hh.seriallink[3].slave
# connect the system port even if it is not used in this example
system.system_port = system.membus.slave
if options.arch == "same":
hh = system.hmc_host
for i in range(options.num_links_controllers):
if options.enable_global_monitor:
system.tgen[i].port = hh.lmonitor[i].slave
else:
system.tgen[i].port = hh.seriallink[i].slave
# set up the root SimObject
root = Root(full_system=False, system=system)
return root
示例3: SrcClockDomain
# 需要導入模塊: from common import MemConfig [as 別名]
# 或者: from common.MemConfig import config_mem [as 別名]
# Create a separate clock domain for the CPUs. In case of Trace CPUs this clock
# is actually used only by the caches connected to the CPU.
system.cpu_clk_domain = SrcClockDomain(clock = options.cpu_clock,
voltage_domain =
system.cpu_voltage_domain)
# All cpus belong to a common cpu_clk_domain, therefore running at a common
# frequency.
for cpu in system.cpu:
cpu.clk_domain = system.cpu_clk_domain
# BaseCPU no longer has default values for the BaseCPU.isa
# createThreads() is needed to fill in the cpu.isa
for cpu in system.cpu:
cpu.createThreads()
# Assign input trace files to the Trace CPU
system.cpu.instTraceFile=options.inst_trace_file
system.cpu.dataTraceFile=options.data_trace_file
# Configure the classic memory system options
MemClass = Simulation.setMemClass(options)
system.membus = SystemXBar()
system.system_port = system.membus.slave
CacheConfig.config_cache(options, system)
MemConfig.config_mem(options, system)
root = Root(full_system = False, system = system)
Simulation.run(options, root, system, FutureClass)
示例4: build_test_system
# 需要導入模塊: from common import MemConfig [as 別名]
# 或者: from common.MemConfig import config_mem [as 別名]
#.........這裏部分代碼省略.........
if options.script is not None:
test_sys.readfile = options.script
if options.lpae:
test_sys.have_lpae = True
if options.virtualisation:
test_sys.have_virtualization = True
test_sys.init_param = options.init_param
# For now, assign all the CPUs to the same clock domain
test_sys.cpu = [TestCPUClass(clk_domain=test_sys.cpu_clk_domain, cpu_id=i)
for i in range(np)]
if CpuConfig.is_kvm_cpu(TestCPUClass) or CpuConfig.is_kvm_cpu(FutureClass):
test_sys.kvm_vm = KvmVM()
if options.ruby:
bootmem = getattr(test_sys, 'bootmem', None)
Ruby.create_system(options, True, test_sys, test_sys.iobus,
test_sys._dma_ports, bootmem)
# Create a seperate clock domain for Ruby
test_sys.ruby.clk_domain = SrcClockDomain(clock = options.ruby_clock,
voltage_domain = test_sys.voltage_domain)
# Connect the ruby io port to the PIO bus,
# assuming that there is just one such port.
test_sys.iobus.master = test_sys.ruby._io_port.slave
for (i, cpu) in enumerate(test_sys.cpu):
#
# Tie the cpu ports to the correct ruby system ports
#
cpu.clk_domain = test_sys.cpu_clk_domain
cpu.createThreads()
cpu.createInterruptController()
cpu.icache_port = test_sys.ruby._cpu_ports[i].slave
cpu.dcache_port = test_sys.ruby._cpu_ports[i].slave
if buildEnv['TARGET_ISA'] in ("x86", "arm"):
cpu.itb.walker.port = test_sys.ruby._cpu_ports[i].slave
cpu.dtb.walker.port = test_sys.ruby._cpu_ports[i].slave
if buildEnv['TARGET_ISA'] in "x86":
cpu.interrupts[0].pio = test_sys.ruby._cpu_ports[i].master
cpu.interrupts[0].int_master = test_sys.ruby._cpu_ports[i].slave
cpu.interrupts[0].int_slave = test_sys.ruby._cpu_ports[i].master
else:
if options.caches or options.l2cache:
# By default the IOCache runs at the system clock
test_sys.iocache = IOCache(addr_ranges = test_sys.mem_ranges)
test_sys.iocache.cpu_side = test_sys.iobus.master
test_sys.iocache.mem_side = test_sys.membus.slave
elif not options.external_memory_system:
test_sys.iobridge = Bridge(delay='50ns', ranges = test_sys.mem_ranges)
test_sys.iobridge.slave = test_sys.iobus.master
test_sys.iobridge.master = test_sys.membus.slave
# Sanity check
if options.simpoint_profile:
if not CpuConfig.is_noncaching_cpu(TestCPUClass):
fatal("SimPoint generation should be done with atomic cpu")
if np > 1:
fatal("SimPoint generation not supported with more than one CPUs")
for i in range(np):
if options.simpoint_profile:
test_sys.cpu[i].addSimPointProbe(options.simpoint_interval)
if options.checker:
test_sys.cpu[i].addCheckerCpu()
if options.bp_type:
bpClass = BPConfig.get(options.bp_type)
test_sys.cpu[i].branchPred = bpClass()
if options.indirect_bp_type:
IndirectBPClass = \
BPConfig.get_indirect(options.indirect_bp_type)
test_sys.cpu[i].branchPred.indirectBranchPred = \
IndirectBPClass()
test_sys.cpu[i].createThreads()
# If elastic tracing is enabled when not restoring from checkpoint and
# when not fast forwarding using the atomic cpu, then check that the
# TestCPUClass is DerivO3CPU or inherits from DerivO3CPU. If the check
# passes then attach the elastic trace probe.
# If restoring from checkpoint or fast forwarding, the code that does this for
# FutureCPUClass is in the Simulation module. If the check passes then the
# elastic trace probe is attached to the switch CPUs.
if options.elastic_trace_en and options.checkpoint_restore == None and \
not options.fast_forward:
CpuConfig.config_etrace(TestCPUClass, test_sys.cpu, options)
CacheConfig.config_cache(options, test_sys)
MemConfig.config_mem(options, test_sys)
return test_sys
示例5: create
# 需要導入模塊: from common import MemConfig [as 別名]
# 或者: from common.MemConfig import config_mem [as 別名]
def create(args):
''' Create and configure the system object. '''
if not args.dtb:
dtb_file = SysPaths.binary("armv8_gem5_v1_%icpu.%s.dtb" %
(args.num_cores, default_dist_version))
else:
dtb_file = args.dtb
if args.script and not os.path.isfile(args.script):
print "Error: Bootscript %s does not exist" % args.script
sys.exit(1)
cpu_class = cpu_types[args.cpu][0]
mem_mode = cpu_class.memory_mode()
# Only simulate caches when using a timing CPU (e.g., the HPI model)
want_caches = True if mem_mode == "timing" else False
system = devices.SimpleSystem(want_caches,
args.mem_size,
mem_mode=mem_mode,
dtb_filename=dtb_file,
kernel=SysPaths.binary(args.kernel),
readfile=args.script,
machine_type="DTOnly")
MemConfig.config_mem(args, system)
# Add the PCI devices we need for this system. The base system
# doesn't have any PCI devices by default since they are assumed
# to be added by the configurastion scripts needin them.
system.pci_devices = [
# Create a VirtIO block device for the system's boot
# disk. Attach the disk image using gem5's Copy-on-Write
# functionality to avoid writing changes to the stored copy of
# the disk image.
PciVirtIO(vio=VirtIOBlock(image=create_cow_image(args.disk_image))),
]
# Attach the PCI devices to the system. The helper method in the
# system assigns a unique PCI bus ID to each of the devices and
# connects them to the IO bus.
for dev in system.pci_devices:
system.attach_pci(dev)
# Wire up the system's memory system
system.connect()
# Add CPU clusters to the system
system.cpu_cluster = [
devices.CpuCluster(system,
args.num_cores,
args.cpu_freq, "1.0V",
*cpu_types[args.cpu]),
]
# Create a cache hierarchy for the cluster. We are assuming that
# clusters have core-private L1 caches and an L2 that's shared
# within the cluster.
for cluster in system.cpu_cluster:
system.addCaches(want_caches, last_cache_level=2)
# Setup gem5's minimal Linux boot loader.
system.realview.setupBootLoader(system.membus, system, SysPaths.binary)
# Linux boot command flags
kernel_cmd = [
# Tell Linux to use the simulated serial port as a console
"console=ttyAMA0",
# Hard-code timi
"lpj=19988480",
# Disable address space randomisation to get a consistent
# memory layout.
"norandmaps",
# Tell Linux where to find the root disk image.
"root=/dev/vda1",
# Mount the root disk read-write by default.
"rw",
# Tell Linux about the amount of physical memory present.
"mem=%s" % args.mem_size,
]
system.boot_osflags = " ".join(kernel_cmd)
return system