本文整理匯總了Python中cle.cle.layers.recurrent.LSTM.get_init_state方法的典型用法代碼示例。如果您正苦於以下問題:Python LSTM.get_init_state方法的具體用法?Python LSTM.get_init_state怎麽用?Python LSTM.get_init_state使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類cle.cle.layers.recurrent.LSTM
的用法示例。
在下文中一共展示了LSTM.get_init_state方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: main
# 需要導入模塊: from cle.cle.layers.recurrent import LSTM [as 別名]
# 或者: from cle.cle.layers.recurrent.LSTM import get_init_state [as 別名]
#.........這裏部分代碼省略.........
unit='softplus',
cons=1e-4,
init_W=init_W,
init_b=init_b_sig)
coeff = FullyConnectedLayer(name='coeff',
parent=['theta_4'],
parent_dim=[p_x_dim],
nout=k,
unit='softmax',
init_W=init_W,
init_b=init_b)
nodes = [rnn,
x_1, x_2, x_3, x_4,
z_1, z_2, z_3, z_4,
phi_1, phi_2, phi_3, phi_4, phi_mu, phi_sig,
prior_1, prior_2, prior_3, prior_4, prior_mu, prior_sig,
theta_1, theta_2, theta_3, theta_4, theta_mu, theta_sig, coeff]
params = OrderedDict()
for node in nodes:
if node.initialize() is not None:
params.update(node.initialize())
params = init_tparams(params)
step_count = sharedX(0, name='step_count')
last_rnn = np.zeros((batch_size, rnn_dim*2), dtype=theano.config.floatX)
rnn_tm1 = sharedX(last_rnn, name='rnn_tm1')
shared_updates = OrderedDict()
shared_updates[step_count] = step_count + 1
s_0 = T.switch(T.eq(T.mod(step_count, reset_freq), 0),
rnn.get_init_state(batch_size), rnn_tm1)
x_shape = x.shape
x_in = x.reshape((x_shape[0]*x_shape[1], -1))
x_1_in = x_1.fprop([x_in], params)
x_2_in = x_2.fprop([x_1_in], params)
x_3_in = x_3.fprop([x_2_in], params)
x_4_in = x_4.fprop([x_3_in], params)
x_4_in = x_4_in.reshape((x_shape[0], x_shape[1], -1))
def inner_fn(x_t, s_tm1):
phi_1_t = phi_1.fprop([x_t, s_tm1], params)
phi_2_t = phi_2.fprop([phi_1_t], params)
phi_3_t = phi_3.fprop([phi_2_t], params)
phi_4_t = phi_4.fprop([phi_3_t], params)
phi_mu_t = phi_mu.fprop([phi_4_t], params)
phi_sig_t = phi_sig.fprop([phi_4_t], params)
prior_1_t = prior_1.fprop([s_tm1], params)
prior_2_t = prior_2.fprop([prior_1_t], params)
prior_3_t = prior_3.fprop([prior_2_t], params)
prior_4_t = prior_4.fprop([prior_3_t], params)
prior_mu_t = prior_mu.fprop([prior_4_t], params)
prior_sig_t = prior_sig.fprop([prior_4_t], params)
z_t = Gaussian_sample(phi_mu_t, phi_sig_t)
z_1_t = z_1.fprop([z_t], params)
z_2_t = z_2.fprop([z_1_t], params)
z_3_t = z_3.fprop([z_2_t], params)
z_4_t = z_4.fprop([z_3_t], params)
示例2: flatten
# 需要導入模塊: from cle.cle.layers.recurrent import LSTM [as 別名]
# 或者: from cle.cle.layers.recurrent.LSTM import get_init_state [as 別名]
theta_1, theta_2, theta_3, theta_4, theta_mu, theta_sig]
for node in nodes:
node.initialize()
params = flatten([node.get_params().values() for node in nodes])
step_count = sharedX(0, name='step_count')
last_main_lstm = np.zeros((batch_size, main_lstm_dim*2), dtype=theano.config.floatX)
main_lstm_tm1 = sharedX(last_main_lstm, name='main_lstm_tm1')
update_list = [step_count, main_lstm_tm1]
step_count = T.switch(T.le(step_count, reset_freq), step_count + 1, 0)
s_0 = T.switch(T.or_(T.cast(T.eq(step_count, 0), 'int32'),
T.cast(T.eq(T.sum(main_lstm_tm1), 0.), 'int32')),
main_lstm.get_init_state(batch_size), main_lstm_tm1)
x_shape = x.shape
x_in = x.reshape((x_shape[0]*x_shape[1], -1))
x_1_in = x_1.fprop([x_in])
x_2_in = x_2.fprop([x_1_in])
x_3_in = x_3.fprop([x_2_in])
x_4_in = x_4.fprop([x_3_in])
x_4_in = x_4_in.reshape((x_shape[0], x_shape[1], -1))
def inner_fn(x_t, s_tm1):
phi_1_t = phi_1.fprop([x_t, s_tm1])
phi_2_t = phi_2.fprop([phi_1_t])
phi_3_t = phi_3.fprop([phi_2_t])
示例3: flatten
# 需要導入模塊: from cle.cle.layers.recurrent import LSTM [as 別名]
# 或者: from cle.cle.layers.recurrent.LSTM import get_init_state [as 別名]
for node in nodes:
node.initialize()
params = flatten([node.get_params().values() for node in nodes])
step_count = sharedX(0, name='step_count')
last_encoder = np.zeros((batch_size, encoder_dim*2), dtype=theano.config.floatX)
last_decoder = np.zeros((batch_size, decoder_dim*2), dtype=theano.config.floatX)
encoder_tm1 = sharedX(last_encoder, name='encoder_tm1')
decoder_tm1 = sharedX(last_decoder, name='decoder_tm1')
update_list = [step_count, encoder_tm1, decoder_tm1]
step_count = T.switch(T.le(step_count, reset_freq), step_count + 1, 0)
enc_0 = T.switch(T.or_(T.cast(T.eq(step_count, 0), 'int32'),
T.cast(T.eq(T.sum(encoder_tm1), 0.), 'int32')),
encoder.get_init_state(batch_size), encoder_tm1)
dec_0 = T.switch(T.or_(T.cast(T.eq(step_count, 0), 'int32'),
T.cast(T.eq(T.sum(decoder_tm1), 0.), 'int32')),
decoder.get_init_state(batch_size), decoder_tm1)
x_shape = x.shape
x_in = x.reshape((x_shape[0]*x_shape[1], -1))
def inner_fn(x_t, x_tm1, enc_tm1, dec_tm1):
enc_t = encoder.fprop([[x_t], [enc_tm1]])
phi_mu_t = phi_mu.fprop([enc_t])
phi_sig_t = phi_sig.fprop([enc_t])
示例4: main
# 需要導入模塊: from cle.cle.layers.recurrent import LSTM [as 別名]
# 或者: from cle.cle.layers.recurrent.LSTM import get_init_state [as 別名]
#.........這裏部分代碼省略.........
corr = FullyConnectedLayer(
name="corr", parent=["theta_1"], parent_dim=[p_x_dim], nout=1, unit="tanh", init_W=init_W, init_b=init_b
)
binary = FullyConnectedLayer(
name="binary", parent=["theta_1"], parent_dim=[p_x_dim], nout=1, unit="sigmoid", init_W=init_W, init_b=init_b
)
nodes = [
rnn,
x_1,
z_1,
phi_1,
phi_mu,
phi_sig,
prior_1,
prior_mu,
prior_sig,
theta_1,
theta_mu,
theta_sig,
corr,
binary,
]
params = OrderedDict()
for node in nodes:
if node.initialize() is not None:
params.update(node.initialize())
params = init_tparams(params)
s_0 = rnn.get_init_state(batch_size)
x_1_temp = x_1.fprop([x], params)
def inner_fn(x_t, s_tm1):
phi_1_t = phi_1.fprop([x_t, s_tm1], params)
phi_mu_t = phi_mu.fprop([phi_1_t], params)
phi_sig_t = phi_sig.fprop([phi_1_t], params)
prior_1_t = prior_1.fprop([s_tm1], params)
prior_mu_t = prior_mu.fprop([prior_1_t], params)
prior_sig_t = prior_sig.fprop([prior_1_t], params)
z_t = Gaussian_sample(phi_mu_t, phi_sig_t)
z_1_t = z_1.fprop([z_t], params)
s_t = rnn.fprop([[x_t, z_1_t], [s_tm1]], params)
return s_t, phi_mu_t, phi_sig_t, prior_mu_t, prior_sig_t, z_1_t
((s_temp, phi_mu_temp, phi_sig_temp, prior_mu_temp, prior_sig_temp, z_1_temp), updates) = theano.scan(
fn=inner_fn, sequences=[x_1_temp], outputs_info=[s_0, None, None, None, None, None]
)
for k, v in updates.iteritems():
k.default_update = v
s_temp = concatenate([s_0[None, :, :], s_temp[:-1]], axis=0)
theta_1_temp = theta_1.fprop([z_1_temp, s_temp], params)
theta_mu_temp = theta_mu.fprop([theta_1_temp], params)
theta_sig_temp = theta_sig.fprop([theta_1_temp], params)
corr_temp = corr.fprop([theta_1_temp], params)
示例5: BiGMM
# 需要導入模塊: from cle.cle.layers.recurrent import LSTM [as 別名]
# 或者: from cle.cle.layers.recurrent.LSTM import get_init_state [as 別名]
theta_sig_t = theta_sig.fprop([theta_4_t])
coeff_t = coeff.fprop([theta_4_t])
x_1_t = x_1.fprop([x_t])
x_2_t = x_2.fprop([x_1_t])
x_3_t = x_3.fprop([x_2_t])
x_4_t = x_4.fprop([x_3_t])
s_t = main_lstm.fprop([[x_4_t], [s_tm1]])
return s_t, theta_mu_t, theta_sig_t, coeff_t
((s_t, theta_mu_t, theta_sig_t, coeff_t), updates) =\
theano.scan(fn=inner_fn,
sequences=[x],
outputs_info=[main_lstm.get_init_state(batch_size),
None, None, None])
for k, v in updates.iteritems():
k.default_update = v
reshaped_x = x.reshape((x.shape[0]*x.shape[1], -1))
reshaped_theta_mu = theta_mu_t.reshape((theta_mu_t.shape[0]*theta_mu_t.shape[1], -1))
reshaped_theta_sig = theta_sig_t.reshape((theta_sig_t.shape[0]*theta_sig_t.shape[1], -1))
reshaped_coeff = coeff_t.reshape((coeff_t.shape[0]*coeff_t.shape[1], -1))
recon = BiGMM(reshaped_x, reshaped_theta_mu, reshaped_theta_sig, reshaped_coeff)
recon = recon.reshape((theta_mu_t.shape[0], theta_mu_t.shape[1]))
recon = recon * mask
recon_term = recon.sum()
recon_term.name = 'nll'
示例6: flatten
# 需要導入模塊: from cle.cle.layers.recurrent import LSTM [as 別名]
# 或者: from cle.cle.layers.recurrent.LSTM import get_init_state [as 別名]
params = flatten([node.get_params().values() for node in nodes])
step_count = sharedX(0, name='step_count')
last_lstm_1 = np.zeros((batch_size, lstm_1_dim*2), dtype=theano.config.floatX)
last_lstm_2 = np.zeros((batch_size, lstm_2_dim*2), dtype=theano.config.floatX)
last_lstm_3 = np.zeros((batch_size, lstm_3_dim*2), dtype=theano.config.floatX)
lstm_1_tm1 = sharedX(last_lstm_1, name='lstm_1_tm1')
lstm_2_tm1 = sharedX(last_lstm_2, name='lstm_2_tm1')
lstm_3_tm1 = sharedX(last_lstm_3, name='lstm_3_tm1')
update_list = [step_count, lstm_1_tm1, lstm_2_tm1, lstm_3_tm1]
step_count = T.switch(T.le(step_count, reset_freq), step_count + 1, 0)
s_1_0 = T.switch(T.or_(T.cast(T.eq(step_count, 0), 'int32'),
T.cast(T.eq(T.sum(lstm_1_tm1), 0.), 'int32')),
lstm_1.get_init_state(batch_size), lstm_1_tm1)
s_2_0 = T.switch(T.or_(T.cast(T.eq(step_count, 0), 'int32'),
T.cast(T.eq(T.sum(lstm_2_tm1), 0.), 'int32')),
lstm_2.get_init_state(batch_size), lstm_2_tm1)
s_3_0 = T.switch(T.or_(T.cast(T.eq(step_count, 0), 'int32'),
T.cast(T.eq(T.sum(lstm_3_tm1), 0.), 'int32')),
lstm_3.get_init_state(batch_size), lstm_3_tm1)
x_shape = x.shape
x_in = x.reshape((x_shape[0]*x_shape[1], -1))
x_1_in = x_1.fprop([x_in])
x_2_in = x_2.fprop([x_1_in])
x_3_in = x_3.fprop([x_2_in])
x_4_in = x_4.fprop([x_3_in])
x_4_in = x_4_in.reshape((x_shape[0], x_shape[1], -1))
示例7: flatten
# 需要導入模塊: from cle.cle.layers.recurrent import LSTM [as 別名]
# 或者: from cle.cle.layers.recurrent.LSTM import get_init_state [as 別名]
params = flatten([node.get_params().values() for node in nodes])
step_count = sharedX(0, name='step_count')
last_lstm_1 = np.zeros((batch_size, lstm_1_dim*2), dtype=theano.config.floatX)
last_lstm_2 = np.zeros((batch_size, lstm_2_dim*2), dtype=theano.config.floatX)
last_lstm_3 = np.zeros((batch_size, lstm_3_dim*2), dtype=theano.config.floatX)
lstm_1_tm1 = sharedX(last_lstm_1, name='lstm_1_tm1')
lstm_2_tm1 = sharedX(last_lstm_2, name='lstm_2_tm1')
lstm_3_tm1 = sharedX(last_lstm_3, name='lstm_3_tm1')
update_list = [step_count, lstm_1_tm1, lstm_2_tm1, lstm_3_tm1]
step_count = T.switch(T.le(step_count, reset_freq), step_count + 1, 0)
s_1_0 = T.switch(T.or_(T.cast(T.eq(step_count, 0), 'int32'),
T.cast(T.eq(T.sum(lstm_1_tm1), 0.), 'int32')),
lstm_1.get_init_state(batch_size), lstm_1_tm1)
s_2_0 = T.switch(T.or_(T.cast(T.eq(step_count, 0), 'int32'),
T.cast(T.eq(T.sum(lstm_2_tm1), 0.), 'int32')),
lstm_2.get_init_state(batch_size), lstm_2_tm1)
s_3_0 = T.switch(T.or_(T.cast(T.eq(step_count, 0), 'int32'),
T.cast(T.eq(T.sum(lstm_3_tm1), 0.), 'int32')),
lstm_3.get_init_state(batch_size), lstm_3_tm1)
x_shape = x.shape
x_in = x.reshape((x_shape[0]*x_shape[1], -1))
def inner_fn(x_t, s_1_tm1, s_2_tm1, s_3_tm1):
theta_1_t = theta_1.fprop([s_3_tm1])
theta_2_t = theta_2.fprop([theta_1_t])
示例8: main
# 需要導入模塊: from cle.cle.layers.recurrent import LSTM [as 別名]
# 或者: from cle.cle.layers.recurrent.LSTM import get_init_state [as 別名]
#.........這裏部分代碼省略.........
parent_dim=[s2x_dim],
nout=target_dim,
unit='softplus',
cons=1e-4,
init_W=init_W,
init_b=init_b_sig)
corr = FullyConnectedLayer(name='corr',
parent=['theta_1'],
parent_dim=[s2x_dim],
nout=1,
unit='tanh',
init_W=init_W,
init_b=init_b)
binary = FullyConnectedLayer(name='binary',
parent=['theta_1'],
parent_dim=[s2x_dim],
nout=1,
unit='sigmoid',
init_W=init_W,
init_b=init_b)
nodes = [rnn, x_1, theta_1, theta_mu, theta_sig, corr, binary]
params = OrderedDict()
for node in nodes:
if node.initialize() is not None:
params.update(node.initialize())
params = init_tparams(params)
s_0 = rnn.get_init_state(batch_size)
x_1_temp = x_1.fprop([x], params)
def inner_fn(x_t, s_tm1):
s_t = rnn.fprop([[x_t], [s_tm1]], params)
return s_t
((s_temp), updates) = theano.scan(fn=inner_fn,
sequences=[x_1_temp],
outputs_info=[s_0])
for k, v in updates.iteritems():
k.default_update = v
s_temp = concatenate([s_0[None, :, :], s_temp[:-1]], axis=0)
theta_1_temp = theta_1.fprop([s_temp], params)
theta_mu_temp = theta_mu.fprop([theta_1_temp], params)
theta_sig_temp = theta_sig.fprop([theta_1_temp], params)
corr_temp = corr.fprop([theta_1_temp], params)
binary_temp = binary.fprop([theta_1_temp], params)
x_shape = x.shape
x_in = x.reshape((x_shape[0]*x_shape[1], -1))
theta_mu_in = theta_mu_temp.reshape((x_shape[0]*x_shape[1], -1))
theta_sig_in = theta_sig_temp.reshape((x_shape[0]*x_shape[1], -1))
corr_in = corr_temp.reshape((x_shape[0]*x_shape[1], -1))
binary_in = binary_temp.reshape((x_shape[0]*x_shape[1], -1))
recon = BiGauss(x_in, theta_mu_in, theta_sig_in, corr_in, binary_in)
示例9: flatten
# 需要導入模塊: from cle.cle.layers.recurrent import LSTM [as 別名]
# 或者: from cle.cle.layers.recurrent.LSTM import get_init_state [as 別名]
theta_1, theta_2, theta_3, theta_4, theta_mu, theta_sig]
for node in nodes:
node.initialize()
params = flatten([node.get_params().values() for node in nodes])
step_count = sharedX(0, name='step_count')
last_main_lstm = np.zeros((batch_size, main_lstm_dim*2), dtype=theano.config.floatX)
main_lstm_tm1 = sharedX(last_main_lstm, name='main_lstm_tm1')
update_list = [step_count, main_lstm_tm1]
step_count = T.switch(T.le(step_count, reset_freq), step_count + 1, 0)
s_0 = T.switch(T.or_(T.cast(T.eq(step_count, 0), 'int32'),
T.cast(T.eq(T.sum(main_lstm_tm1), 0.), 'int32')),
main_lstm.get_init_state(batch_size), main_lstm_tm1)
x_shape = x.shape
x_in = x.reshape((x_shape[0]*x_shape[1], -1))
x_1_in = x_1.fprop([x_in])
x_2_in = x_2.fprop([x_1_in])
x_3_in = x_3.fprop([x_2_in])
x_4_in = x_4.fprop([x_3_in])
x_4_in = x_4_in.reshape((x_shape[0], x_shape[1], -1))
def inner_fn(x_t, s_tm1):
s_t = main_lstm.fprop([[x_t], [s_tm1]])
return s_t
示例10: Gaussian
# 需要導入模塊: from cle.cle.layers.recurrent import LSTM [as 別名]
# 或者: from cle.cle.layers.recurrent.LSTM import get_init_state [as 別名]
w_2 = Gaussian(z_2_is, prior_mu_2_t, prior_sig_2_t) -\
Gaussian(z_2_is, phi_mu_2_t, phi_sig_2_t)
marginal_ll.append(GMM(x_t, theta_mu_t, theta_sig_t, coeff_t) + w_1 + w_2)
marginal_ll = T.concatenate(marginal_ll, axis=0).mean()
return s_1_t, s_2_t, kl_1_t, kl_2_t, phi_sig_1_t, phi_sig_2_t,\
prior_sig_1_t, prior_sig_2_t, theta_mu_t, theta_sig_t, coeff_t,\
marginal_ll
((s_1_t, s_2_t, kl_1_t, kl_2_t, phi_sig_1_t, phi_sig_2_t,
prior_sig_1_t, prior_sig_2_t, theta_mu_t, theta_sig_t, coeff_t,
marginal_ll),
updates) =\
theano.scan(fn=inner_fn,
sequences=[x],
outputs_info=[coder_1.get_init_state(),
coder_2.get_init_state(),
None, None, None, None, None,
None, None, None, None, None])
for k, v in updates.iteritems():
k.default_update = v
reshaped_x = x.reshape((x.shape[0]*x.shape[1], -1))
reshaped_theta_mu = theta_mu_t.reshape((theta_mu_t.shape[0]*theta_mu_t.shape[1], -1))
reshaped_theta_sig = theta_sig_t.reshape((theta_sig_t.shape[0]*theta_sig_t.shape[1], -1))
reshaped_coeff = coeff_t.reshape((coeff_t.shape[0]*coeff_t.shape[1], -1))
reshaped_mask = mask.flatten()
kl_1_term = kl_1_t.reshape((kl_1_t.shape[0]*kl_1_t.shape[1], -1))
kl_2_term = kl_2_t.reshape((kl_2_t.shape[0]*kl_2_t.shape[1], -1))
recon_term = GMM(reshaped_x, reshaped_theta_mu, reshaped_theta_sig, reshaped_coeff)
# Apply mask
示例11: Gaussian
# 需要導入模塊: from cle.cle.layers.recurrent import LSTM [as 別名]
# 或者: from cle.cle.layers.recurrent.LSTM import get_init_state [as 別名]
theta_sig_t = theta_sig.fprop([theta_emb_t])
coeff_t = coeff.fprop([theta_emb_t])
w = Gaussian(z_is, prior_mu_t, prior_sig_t) -\
Gaussian(z_is, phi_mu_t, phi_sig_t)
marginal_ll.append(GMM(x_t, theta_mu_t, theta_sig_t, coeff_t) + w)
marginal_ll = T.concatenate(marginal_ll, axis=0).mean()
return enc_t, dec_t, pec_t, kl_t, theta_mu_t, coeff_t, marginal_ll
prior_sig_t = prior_sig.fprop()
phi_sig_t = phi_sig.fprop()
theta_sig_t = theta_sig.fprop()
((enc_t, dec_t, pec_t, kl_t, theta_mu_t, coeff_t, marginal_ll), updates) =\
theano.scan(fn=inner_fn,
sequences=[x, x2],
outputs_info=[encoder.get_init_state(),
decoder.get_init_state(),
pecoder.get_init_state(),
None, None, None, None],
non_sequences=[phi_sig_t, prior_sig_t, theta_sig_t])
for k, v in updates.iteritems():
k.default_update = v
reshaped_x = x.reshape((x.shape[0]*x.shape[1], -1))
reshaped_theta_mu = theta_mu_t.reshape((theta_mu_t.shape[0]*theta_mu_t.shape[1], -1))
reshaped_coeff = coeff_t.reshape((coeff_t.shape[0]*coeff_t.shape[1], -1))
reshaped_mask = mask.flatten()
kl_term = kl_t.reshape((kl_t.shape[0]*kl_t.shape[1], -1))
recon_term = GMM(reshaped_x, reshaped_theta_mu, theta_sig_t, reshaped_coeff)
# Apply mask
示例12: OrderedDict
# 需要導入模塊: from cle.cle.layers.recurrent import LSTM [as 別名]
# 或者: from cle.cle.layers.recurrent.LSTM import get_init_state [as 別名]
theta_1, theta_2, theta_3, theta_4, theta_mu, theta_sig, coeff]
params = OrderedDict()
for node in nodes:
if node.initialize() is not None:
params.update(node.initialize())
params = init_tparams(params)
step_count = sharedX(0, name='step_count')
last_rnn = np.zeros((batch_size, rnn_dim*2), dtype=theano.config.floatX)
rnn_tm1 = sharedX(last_rnn, name='rnn_tm1')
shared_updates = OrderedDict()
shared_updates[step_count] = step_count + 1
s_0 = T.switch(T.eq(T.mod(step_count, reset_freq), 0),
rnn.get_init_state(batch_size), rnn_tm1)
x_1_temp = x_1.fprop([x], params)
x_2_temp = x_2.fprop([x_1_temp], params)
x_3_temp = x_3.fprop([x_2_temp], params)
x_4_temp = x_4.fprop([x_3_temp], params)
def inner_fn(x_t, s_tm1):
s_t = rnn.fprop([[x_t], [s_tm1]], params)
return s_t
(s_temp, updates) = theano.scan(fn=inner_fn,
sequences=[x_4_temp],
示例13: OrderedDict
# 需要導入模塊: from cle.cle.layers.recurrent import LSTM [as 別名]
# 或者: from cle.cle.layers.recurrent.LSTM import get_init_state [as 別名]
nout=nlabel,
unit='sigmoid',
init_W=init_W,
init_b=init_b)
nodes = [h1, h2, h3, output]
params = OrderedDict()
for node in nodes:
if node.initialize() is not None:
params.update(node.initialize())
params = init_tparams(params)
s1_0 = h1.get_init_state(batch_size)
s2_0 = h2.get_init_state(batch_size)
s3_0 = h3.get_init_state(batch_size)
def inner_fn(x_t, s1_tm1, s2_tm1, s3_tm1):
h1_t = h1.fprop([[x_t], [s1_tm1]], params)
h2_t = h2.fprop([[h1_t], [s2_tm1]], params)
h3_t = h3.fprop([[h2_t], [s2_tm1]], params)
output_t = output.fprop([h1_t, h2_t, h3_t], params)
return h1_t, h2_t, h3_t, output_t
((h1_temp, h2_temp, h3_temp, y_hat_temp), updates) =\
theano.scan(fn=inner_fn,
示例14: NllBin
# 需要導入模塊: from cle.cle.layers.recurrent import LSTM [as 別名]
# 或者: from cle.cle.layers.recurrent.LSTM import get_init_state [as 別名]
prior_out = prior.fprop([phi_mu_out, phi_sig_out])
kl_out = kl.fprop([phi_mu_out, phi_sig_out])
dec_out = dec.fprop([[prior_out], [dec_tm1]])
w_out = w.fprop([dec_out])
write_param_out = write_param.fprop([dec_out])
write_out = write.fprop([w_out, write_param_out])
canvas_out = canvas.fprop([[write_out], [canvas_tm1]])
return enc_out, dec_out, canvas_out, kl_out
((enc_out, dec_out, canvas_out, kl_out), updates) =\
theano.scan(fn=inner_fn,
outputs_info=[enc.get_init_state(),
dec.get_init_state(),
canvas.get_init_state(),
None],
non_sequences=[x],
n_steps=n_steps)
for k, v in updates.iteritems():
k.default_update = v
recon_term = NllBin(x, T.nnet.sigmoid(canvas_out[-1])).mean()
kl_term = kl_out.sum(axis=0).mean()
cost = recon_term + kl_term
cost.name = 'cost'
recon_term.name = 'recon_term'
kl_term.name = 'kl_term'
recon_err = ((x - T.nnet.sigmoid(canvas_out[-1]))**2).mean() / x.std()
示例15: GMM
# 需要導入模塊: from cle.cle.layers.recurrent import LSTM [as 別名]
# 或者: from cle.cle.layers.recurrent.LSTM import get_init_state [as 別名]
z_t = prior.fprop([phi_mu_t, phi_sig_t])
kl_t = kl.fprop([phi_mu_t, phi_sig_t, prior_mu_t, prior_sig_t])
theta_mu_t = theta_mu.fprop([s_tm1])
theta_sig_t = theta_sig.fprop([s_tm1])
coeff_t = coeff.fprop([s_tm1])
s_t = coder.fprop([[x_t, z_t], [s_tm1]])
return s_t, kl_t, prior_sig_t, phi_sig_t, theta_mu_t, theta_sig_t, coeff_t
((s_t, kl_t, prior_sig_t, phi_sig_t, theta_mu_t, theta_sig_t, coeff_t),
updates) =\
theano.scan(fn=inner_fn,
sequences=[x],
outputs_info=[coder.get_init_state(),
None, None, None, None, None, None])
for k, v in updates.iteritems():
k.default_update = v
reshaped_x = x.reshape((x.shape[0]*x.shape[1], -1))
reshaped_theta_mu = theta_mu_t.reshape((theta_mu_t.shape[0]*theta_mu_t.shape[1], -1))
reshaped_theta_sig = theta_sig_t.reshape((theta_sig_t.shape[0]*theta_sig_t.shape[1], -1))
reshaped_coeff = coeff_t.reshape((coeff_t.shape[0]*coeff_t.shape[1], -1))
reshaped_mask = mask.flatten()
kl_term = kl_t.reshape((kl_t.shape[0]*kl_t.shape[1], -1))
recon_term = GMM(reshaped_x, reshaped_theta_mu, reshaped_theta_sig, reshaped_coeff)
# Apply mask
kl_term = kl_term[reshaped_mask.nonzero()].mean()