當前位置: 首頁>>代碼示例>>Python>>正文


Python Gaussian.mean方法代碼示例

本文整理匯總了Python中cle.cle.cost.Gaussian.mean方法的典型用法代碼示例。如果您正苦於以下問題:Python Gaussian.mean方法的具體用法?Python Gaussian.mean怎麽用?Python Gaussian.mean使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在cle.cle.cost.Gaussian的用法示例。


在下文中一共展示了Gaussian.mean方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: cost

# 需要導入模塊: from cle.cle.cost import Gaussian [as 別名]
# 或者: from cle.cle.cost.Gaussian import mean [as 別名]
 def cost(self, X):
     if len(X) != 3:
         raise ValueError("The number of inputs does not match.")
     cost = Gaussian(X[0], X[1], X[2])
     if self.use_sum:
         return cost.sum()
     else:
         return cost.mean()
開發者ID:kyunghyuncho,項目名稱:cle,代碼行數:10,代碼來源:cost.py

示例2: Gaussian

# 需要導入模塊: from cle.cle.cost import Gaussian [as 別名]
# 或者: from cle.cle.cost.Gaussian import mean [as 別名]
theta_3_in = theta_3.fprop([theta_2_in])
theta_4_in = theta_4.fprop([theta_3_in])
theta_mu_in = theta_mu.fprop([theta_4_in])
theta_sig_in = theta_sig.fprop([theta_4_in])

z_shape = phi_mu_t.shape
phi_mu_in = phi_mu_t.reshape((z_shape[0]*z_shape[1], -1))
phi_sig_in = phi_sig_t.reshape((z_shape[0]*z_shape[1], -1))
prior_mu_in = prior_mu_t.reshape((z_shape[0]*z_shape[1], -1))
prior_sig_in = prior_sig_t.reshape((z_shape[0]*z_shape[1], -1))
kl_in = kl.fprop([phi_mu_in, phi_sig_in, prior_mu_in, prior_sig_in])
kl_t = kl_in.reshape((z_shape[0], z_shape[1]))

recon = Gaussian(x_in, theta_mu_in, theta_sig_in)
recon = recon.reshape((x_shape[0], x_shape[1]))
recon_term = recon.mean()
kl_term = kl_t.mean()
nll_lower_bound = recon_term + kl_term
nll_lower_bound.name = 'nll_lower_bound'

mn_x_shape = mn_x.shape
mn_x_in = mn_x.reshape((mn_x_shape[0]*mn_x_shape[1], -1))
mn_x_1_in = x_1.fprop([mn_x_in])
mn_x_2_in = x_2.fprop([mn_x_1_in])
mn_x_3_in = x_3.fprop([mn_x_2_in])
mn_x_4_in = x_4.fprop([mn_x_3_in])
mn_x_4_in = mn_x_4_in.reshape((mn_x_shape[0], mn_x_shape[1], -1))
mn_s_0 = main_lstm.get_init_state(mn_batch_size)

((mn_s_t, mn_phi_mu_t, mn_phi_sig_t, mn_prior_mu_t, mn_prior_sig_t, mn_z_4_t), mn_updates) =\
    theano.scan(fn=inner_fn,
開發者ID:anirudh9119,項目名稱:SpeechSyn,代碼行數:33,代碼來源:m2.py

示例3: main

# 需要導入模塊: from cle.cle.cost import Gaussian [as 別名]
# 或者: from cle.cle.cost.Gaussian import mean [as 別名]
def main(args):

    trial = int(args['trial'])
    pkl_name = 'rnn_gauss_%d' % trial
    channel_name = 'valid_nll'

    data_path = args['data_path']
    save_path = args['save_path']

    monitoring_freq = int(args['monitoring_freq'])
    force_saving_freq = int(args['force_saving_freq'])
    reset_freq = int(args['reset_freq'])
    epoch = int(args['epoch'])
    batch_size = int(args['batch_size'])
    m_batch_size = int(args['m_batch_size'])
    x_dim = int(args['x_dim'])
    z_dim = int(args['z_dim'])
    rnn_dim = int(args['rnn_dim'])
    lr = float(args['lr'])
    debug = int(args['debug'])

    print "trial no. %d" % trial
    print "batch size %d" % batch_size
    print "learning rate %f" % lr
    print "saving pkl file '%s'" % pkl_name
    print "to the save path '%s'" % save_path

    x2s_dim = 800
    s2x_dim = 800
    target_dim = x_dim

    file_name = 'blizzard_unseg_tbptt'
    normal_params = np.load(data_path + file_name + '_normal.npz')
    X_mean = normal_params['X_mean']
    X_std = normal_params['X_std']

    model = Model()
    train_data = Blizzard_tbptt(name='train',
                                path=data_path,
                                frame_size=x_dim,
                                file_name=file_name,
                                X_mean=X_mean,
                                X_std=X_std)

    valid_data = Blizzard_tbptt(name='valid',
                                path=data_path,
                                frame_size=x_dim,
                                file_name=file_name,
                                X_mean=X_mean,
                                X_std=X_std)

    x = train_data.theano_vars()
    m_x = valid_data.theano_vars()

    if debug:
        x.tag.test_value = np.zeros((15, batch_size, x_dim), dtype=theano.config.floatX)
        m_x.tag.test_value = np.zeros((15, m_batch_size, x_dim), dtype=theano.config.floatX)

    init_W = InitCell('rand')
    init_U = InitCell('ortho')
    init_b = InitCell('zeros')
    init_b_sig = InitCell('const', mean=0.6)

    x_1 = FullyConnectedLayer(name='x_1',
                              parent=['x_t'],
                              parent_dim=[x_dim],
                              nout=x2s_dim,
                              unit='relu',
                              init_W=init_W,
                              init_b=init_b)

    x_2 = FullyConnectedLayer(name='x_2',
                              parent=['x_1'],
                              parent_dim=[x2s_dim],
                              nout=x2s_dim,
                              unit='relu',
                              init_W=init_W,
                              init_b=init_b)

    x_3 = FullyConnectedLayer(name='x_3',
                              parent=['x_2'],
                              parent_dim=[x2s_dim],
                              nout=x2s_dim,
                              unit='relu',
                              init_W=init_W,
                              init_b=init_b)

    x_4 = FullyConnectedLayer(name='x_4',
                              parent=['x_3'],
                              parent_dim=[x2s_dim],
                              nout=x2s_dim,
                              unit='relu',
                              init_W=init_W,
                              init_b=init_b)

    rnn = LSTM(name='rnn',
               parent=['x_4'],
               parent_dim=[x2s_dim],
               nout=rnn_dim,
               unit='tanh',
#.........這裏部分代碼省略.........
開發者ID:kastnerkyle,項目名稱:nips2015_vrnn,代碼行數:103,代碼來源:rnn_gauss.py

示例4: Gaussian

# 需要導入模塊: from cle.cle.cost import Gaussian [as 別名]
# 或者: from cle.cle.cost.Gaussian import mean [as 別名]
decoder_tm1 = dec_t[-1]

dec_shape = dec_t.shape
dec_in = dec_t.reshape((dec_shape[0]*dec_shape[1], -1))
theta_mu_in = theta_mu.fprop([dec_in])
theta_sig_in = theta_sig.fprop([dec_in])

z_shape = phi_mu_t.shape
phi_mu_in = phi_mu_t.reshape((z_shape[0]*z_shape[1], -1))
phi_sig_in = phi_sig_t.reshape((z_shape[0]*z_shape[1], -1))
kl_in = kl.fprop([phi_mu_in, phi_sig_in])
kl_t = kl_in.reshape((z_shape[0], z_shape[1]))

recon = Gaussian(x_in, theta_mu_in, theta_sig_in)
recon = recon.reshape((x_shape[0], x_shape[1]))
recon_term = recon.mean()
kl_term = kl_t.mean()
nll_lower_bound = recon_term + kl_term
nll_lower_bound.name = 'nll_lower_bound'
recon_term.name = 'recon_term'
kl_term.name = 'kl_term'

kl_ratio = kl_term / T.abs_(recon_term)
kl_ratio.name = 'kl_term proportion'

max_x = x.max()
mean_x = x.mean()
min_x = x.min()
max_x.name = 'max_x'
mean_x.name = 'mean_x'
min_x.name = 'min_x'
開發者ID:anirudh9119,項目名稱:SpeechSyn,代碼行數:33,代碼來源:storn0_orig.py

示例5: main

# 需要導入模塊: from cle.cle.cost import Gaussian [as 別名]
# 或者: from cle.cle.cost.Gaussian import mean [as 別名]
def main(args):

    trial = int(args['trial'])
    pkl_name = 'vrnn_gauss_%d' % trial
    channel_name = 'valid_nll_upper_bound'

    data_path = args['data_path']
    save_path = args['save_path']
    data_path = os.path.expanduser(args['data_path'])
    save_path = os.path.expanduser(args['save_path'])
    monitoring_freq = int(args['monitoring_freq'])
    force_saving_freq = int(args['force_saving_freq'])
    reset_freq = int(args['reset_freq'])
    epoch = int(args['epoch'])
    batch_size = int(args['batch_size'])
    m_batch_size = int(args['m_batch_size'])
    x_dim = int(args['x_dim'])
    z_dim = int(args['z_dim'])
    rnn_dim = int(args['rnn_dim'])
    lr = float(args['lr'])
    debug = int(args['debug'])

    print "trial no. %d" % trial
    print "batch size %d" % batch_size
    print "learning rate %f" % lr
    print "saving pkl file '%s'" % pkl_name
    print "to the save path '%s'" % save_path

    q_z_dim = 500
    p_z_dim = 500
    p_x_dim = 600
    x2s_dim = 600
    z2s_dim = 500
    target_dim = x_dim

    file_name = 'blizzard_tbptt'
    normal_params = np.load(data_path + file_name + '_normal.npz')
    X_mean = normal_params['X_mean']
    X_std = normal_params['X_std']

    model = Model()
    train_data = Blizzard_tbptt(name='train',
                                path=data_path,
                                frame_size=x_dim,
                                file_name=file_name,
                                X_mean=X_mean,
                                X_std=X_std)

    valid_data = Blizzard_tbptt(name='valid',
                                path=data_path,
                                frame_size=x_dim,
                                file_name=file_name,
                                X_mean=X_mean,
                                X_std=X_std)

    x = train_data.theano_vars()
    m_x = valid_data.theano_vars()

    if debug:
        x.tag.test_value = np.zeros((15, batch_size, x_dim), dtype=theano.config.floatX)
        m_x.tag.test_value = np.zeros((15, m_batch_size, x_dim), dtype=theano.config.floatX)

    init_W = InitCell('rand')
    init_U = InitCell('ortho')
    init_b = InitCell('zeros')
    init_b_sig = InitCell('const', mean=0.6)

    x_1 = FullyConnectedLayer(name='x_1',
                              parent=['x_t'],
                              parent_dim=[x_dim],
                              nout=x2s_dim,
                              unit='relu',
                              init_W=init_W,
                              init_b=init_b)

    x_2 = FullyConnectedLayer(name='x_2',
                              parent=['x_1'],
                              parent_dim=[x2s_dim],
                              nout=x2s_dim,
                              unit='relu',
                              init_W=init_W,
                              init_b=init_b)

    x_3 = FullyConnectedLayer(name='x_3',
                              parent=['x_2'],
                              parent_dim=[x2s_dim],
                              nout=x2s_dim,
                              unit='relu',
                              init_W=init_W,
                              init_b=init_b)

    x_4 = FullyConnectedLayer(name='x_4',
                              parent=['x_3'],
                              parent_dim=[x2s_dim],
                              nout=x2s_dim,
                              unit='relu',
                              init_W=init_W,
                              init_b=init_b)

    z_1 = FullyConnectedLayer(name='z_1',
#.........這裏部分代碼省略.........
開發者ID:szcom,項目名稱:nips2015_vrnn,代碼行數:103,代碼來源:vrnn_gauss_iwae.py

示例6: main

# 需要導入模塊: from cle.cle.cost import Gaussian [as 別名]
# 或者: from cle.cle.cost.Gaussian import mean [as 別名]
def main(args):

    trial = int(args["trial"])
    pkl_name = "vrnn_gauss_%d" % trial
    channel_name = "valid_nll_upper_bound"

    data_path = args["data_path"]
    save_path = args["save_path"]
    data_path = os.path.expanduser(args["data_path"])
    save_path = os.path.expanduser(args["save_path"])
    monitoring_freq = int(args["monitoring_freq"])
    force_saving_freq = int(args["force_saving_freq"])
    reset_freq = int(args["reset_freq"])
    epoch = int(args["epoch"])
    batch_size = int(args["batch_size"])
    m_batch_size = int(args["m_batch_size"])
    x_dim = int(args["x_dim"])
    z_dim = int(args["z_dim"])
    rnn_dim = int(args["rnn_dim"])
    lr = float(args["lr"])
    debug = int(args["debug"])

    print "trial no. %d" % trial
    print "batch size %d" % batch_size
    print "learning rate %f" % lr
    print "saving pkl file '%s'" % pkl_name
    print "to the save path '%s'" % save_path

    q_z_dim = 500
    p_z_dim = 500
    p_x_dim = 600
    x2s_dim = 600
    z2s_dim = 500
    target_dim = x_dim

    file_name = "blizzard_tbptt"
    normal_params = np.load(data_path + file_name + "_normal.npz")
    X_mean = normal_params["X_mean"]
    X_std = normal_params["X_std"]

    model = Model()
    train_data = Blizzard_tbptt(
        name="train", path=data_path, frame_size=x_dim, file_name=file_name, X_mean=X_mean, X_std=X_std
    )

    valid_data = Blizzard_tbptt(
        name="valid", path=data_path, frame_size=x_dim, file_name=file_name, X_mean=X_mean, X_std=X_std
    )

    x = train_data.theano_vars()
    m_x = valid_data.theano_vars()

    if debug:
        x.tag.test_value = np.zeros((15, batch_size, x_dim), dtype=theano.config.floatX)
        m_x.tag.test_value = np.zeros((15, m_batch_size, x_dim), dtype=theano.config.floatX)

    init_W = InitCell("rand")
    init_U = InitCell("ortho")
    init_b = InitCell("zeros")
    init_b_sig = InitCell("const", mean=0.6)

    x_1 = FullyConnectedLayer(
        name="x_1", parent=["x_t"], parent_dim=[x_dim], nout=x2s_dim, unit="relu", init_W=init_W, init_b=init_b
    )

    x_2 = FullyConnectedLayer(
        name="x_2", parent=["x_1"], parent_dim=[x2s_dim], nout=x2s_dim, unit="relu", init_W=init_W, init_b=init_b
    )

    x_3 = FullyConnectedLayer(
        name="x_3", parent=["x_2"], parent_dim=[x2s_dim], nout=x2s_dim, unit="relu", init_W=init_W, init_b=init_b
    )

    x_4 = FullyConnectedLayer(
        name="x_4", parent=["x_3"], parent_dim=[x2s_dim], nout=x2s_dim, unit="relu", init_W=init_W, init_b=init_b
    )

    z_1 = FullyConnectedLayer(
        name="z_1", parent=["z_t"], parent_dim=[z_dim], nout=z2s_dim, unit="relu", init_W=init_W, init_b=init_b
    )

    z_2 = FullyConnectedLayer(
        name="z_2", parent=["z_1"], parent_dim=[z2s_dim], nout=z2s_dim, unit="relu", init_W=init_W, init_b=init_b
    )

    z_3 = FullyConnectedLayer(
        name="z_3", parent=["z_2"], parent_dim=[z2s_dim], nout=z2s_dim, unit="relu", init_W=init_W, init_b=init_b
    )

    z_4 = FullyConnectedLayer(
        name="z_4", parent=["z_3"], parent_dim=[z2s_dim], nout=z2s_dim, unit="relu", init_W=init_W, init_b=init_b
    )

    rnn = LSTM(
        name="rnn",
        parent=["x_4", "z_4"],
        parent_dim=[x2s_dim, z2s_dim],
        nout=rnn_dim,
        unit="tanh",
        init_W=init_W,
#.........這裏部分代碼省略.........
開發者ID:szcom,項目名稱:nips2015_vrnn,代碼行數:103,代碼來源:vrnn_gauss_alt_nll.py


注:本文中的cle.cle.cost.Gaussian.mean方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。