當前位置: 首頁>>代碼示例>>Python>>正文


Python Cdo.monmean方法代碼示例

本文整理匯總了Python中cdo.Cdo.monmean方法的典型用法代碼示例。如果您正苦於以下問題:Python Cdo.monmean方法的具體用法?Python Cdo.monmean怎麽用?Python Cdo.monmean使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在cdo.Cdo的用法示例。


在下文中一共展示了Cdo.monmean方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: get_model_data_generic

# 需要導入模塊: from cdo import Cdo [as 別名]
# 或者: from cdo.Cdo import monmean [as 別名]
    def get_model_data_generic(self, interval='season', **kwargs):
        """
        unique parameters are:
            filename - file basename
            variable - name of the variable as the short_name in the netcdf file

            kwargs is a dictionary with keys for each model. Then a dictionary with properties follows

        """

        if not self.type in kwargs.keys():
            print 'WARNING: it is not possible to get data using generic function, as method missing: ', self.type, kwargs.keys()
            return None

        locdict = kwargs[self.type]

        # read settings and details from the keyword arguments
        # no defaults; everything should be explicitely specified in either the config file or the dictionaries
        varname = locdict.pop('variable')
        units = locdict.pop('unit', 'Crazy Unit')
        #interval = kwargs.pop('interval') #, 'season') #does not make sense to specifiy a default value as this option is specified by configuration file!

        lat_name = locdict.pop('lat_name', 'lat')
        lon_name = locdict.pop('lon_name', 'lon')
        model_suffix = locdict.pop('model_suffix')
        model_prefix = locdict.pop('model_prefix')
        file_format = locdict.pop('file_format')
        scf = locdict.pop('scale_factor')
        valid_mask = locdict.pop('valid_mask')
        custom_path = locdict.pop('custom_path', None)
        thelevel = locdict.pop('level', None)

        target_grid = self._actplot_options['targetgrid']
        interpolation = self._actplot_options['interpolation']

        if custom_path is None:
            filename1 = ("%s%s/merged/%s_%s_%s_%s_%s.%s" %
                        (self.data_dir, varname, varname, model_prefix, self.model, self.experiment, model_suffix, file_format))
        else:
            if self.type == 'CMIP5':
                filename1 = ("%s/%s_%s_%s_%s_%s.%s" %
                             (custom_path, varname, model_prefix, self.model, self.experiment, model_suffix, file_format))
            elif self.type == 'CMIP5RAW':
                filename1 = ("%s/%s_%s_%s_%s_%s.%s" %
                             (custom_path, varname, model_prefix, self.model, self.experiment, model_suffix, file_format))
            elif self.type == 'CMIP5RAWSINGLE':
                print 'todo needs implementation!'
                assert False
            elif self.type == 'CMIP3':
                filename1 = ("%s/%s_%s_%s_%s.%s" %
                             (custom_path, self.experiment, self.model, varname, model_suffix, file_format))
            else:
                print self.type
                raise ValueError('Can not generate filename: invalid model type! %s' % self.type)

        force_calc = False

        if self.start_time is None:
            raise ValueError('Start time needs to be specified')
        if self.stop_time is None:
            raise ValueError('Stop time needs to be specified')

        #/// PREPROCESSING ///
        cdo = Cdo()
        s_start_time = str(self.start_time)[0:10]
        s_stop_time = str(self.stop_time)[0:10]

        #1) select timeperiod and generate monthly mean file
        if target_grid == 't63grid':
            gridtok = 'T63'
        else:
            gridtok = 'SPECIAL_GRID'

        file_monthly = filename1[:-3] + '_' + s_start_time + '_' + s_stop_time + '_' + gridtok + '_monmean.nc'  # target filename
        file_monthly = get_temporary_directory() + os.path.basename(file_monthly)

        sys.stdout.write('\n *** Model file monthly: %s\n' % file_monthly)

        if not os.path.exists(filename1):
            print 'WARNING: File not existing: ' + filename1
            return None

        cdo.monmean(options='-f nc', output=file_monthly, input='-' + interpolation + ',' + target_grid + ' -seldate,' + s_start_time + ',' + s_stop_time + ' ' + filename1, force=force_calc)

        sys.stdout.write('\n *** Reading model data... \n')
        sys.stdout.write('     Interval: ' + interval + '\n')

        #2) calculate monthly or seasonal climatology
        if interval == 'monthly':
            mdata_clim_file = file_monthly[:-3] + '_ymonmean.nc'
            mdata_sum_file = file_monthly[:-3] + '_ymonsum.nc'
            mdata_N_file = file_monthly[:-3] + '_ymonN.nc'
            mdata_clim_std_file = file_monthly[:-3] + '_ymonstd.nc'
            cdo.ymonmean(options='-f nc -b 32', output=mdata_clim_file, input=file_monthly, force=force_calc)
            cdo.ymonsum(options='-f nc -b 32', output=mdata_sum_file, input=file_monthly, force=force_calc)
            cdo.ymonstd(options='-f nc -b 32', output=mdata_clim_std_file, input=file_monthly, force=force_calc)
            cdo.div(options='-f nc', output=mdata_N_file, input=mdata_sum_file + ' ' + mdata_clim_file, force=force_calc)  # number of samples
        elif interval == 'season':
            mdata_clim_file = file_monthly[:-3] + '_yseasmean.nc'
            mdata_sum_file = file_monthly[:-3] + '_yseassum.nc'
#.........這裏部分代碼省略.........
開發者ID:zengeo,項目名稱:pycmbs,代碼行數:103,代碼來源:cmip5.py

示例2: xxxxxxxxxxxxxxxxxxxget_surface_shortwave_radiation_down

# 需要導入模塊: from cdo import Cdo [as 別名]
# 或者: from cdo.Cdo import monmean [as 別名]
    def xxxxxxxxxxxxxxxxxxxget_surface_shortwave_radiation_down(self, interval='season', force_calc=False, **kwargs):
        """
        return data object of
        a) seasonal means for SIS
        b) global mean timeseries for SIS at original temporal resolution
        """

        the_variable = 'rsds'

        locdict = kwargs[self.type]
        valid_mask = locdict.pop('valid_mask')

        if self.start_time is None:
            raise ValueError('Start time needs to be specified')
        if self.stop_time is None:
            raise ValueError('Stop time needs to be specified')

        s_start_time = str(self.start_time)[0:10]
        s_stop_time = str(self.stop_time)[0:10]

        if self.type == 'CMIP5':
            filename1 = self.data_dir + 'rsds' + os.sep + self.experiment + '/ready/' + self.model + '/rsds_Amon_' + self.model + '_' + self.experiment + '_ensmean.nc'
        elif self.type == 'CMIP5RAW':  # raw CMIP5 data based on ensembles
            filename1 = self._get_ensemble_filename(the_variable)
        elif self.type == 'CMIP5RAWSINGLE':
            filename1 = self.get_single_ensemble_file(the_variable, mip='Amon', realm='atmos', temporal_resolution='mon')
        else:
            raise ValueError('Unknown model type! not supported here!')

        if not os.path.exists(filename1):
            print ('WARNING file not existing: %s' % filename1)
            return None

        #/// PREPROCESSING ///
        cdo = Cdo()

        #1) select timeperiod and generatget_she monthly mean file
        file_monthly = filename1[:-3] + '_' + s_start_time + '_' + s_stop_time + '_T63_monmean.nc'
        file_monthly = get_temporary_directory() + os.path.basename(file_monthly)

        print file_monthly

        sys.stdout.write('\n *** Model file monthly: %s\n' % file_monthly)
        cdo.monmean(options='-f nc', output=file_monthly, input='-remapcon,t63grid -seldate,' + s_start_time + ',' + s_stop_time + ' ' + filename1, force=force_calc)

        sys.stdout.write('\n *** Reading model data... \n')
        sys.stdout.write('     Interval: ' + interval + '\n')

        #2) calculate monthly or seasonal climatology
        if interval == 'monthly':
            sis_clim_file = file_monthly[:-3] + '_ymonmean.nc'
            sis_sum_file = file_monthly[:-3] + '_ymonsum.nc'
            sis_N_file = file_monthly[:-3] + '_ymonN.nc'
            sis_clim_std_file = file_monthly[:-3] + '_ymonstd.nc'
            cdo.ymonmean(options='-f nc -b 32', output=sis_clim_file, input=file_monthly, force=force_calc)
            cdo.ymonsum(options='-f nc -b 32', output=sis_sum_file, input=file_monthly, force=force_calc)
            cdo.ymonstd(options='-f nc -b 32', output=sis_clim_std_file, input=file_monthly, force=force_calc)
            cdo.div(options='-f nc', output=sis_N_file, input=sis_sum_file + ' ' + sis_clim_file, force=force_calc)  # number of samples
        elif interval == 'season':
            sis_clim_file = file_monthly[:-3] + '_yseasmean.nc'
            sis_sum_file = file_monthly[:-3] + '_yseassum.nc'
            sis_N_file = file_monthly[:-3] + '_yseasN.nc'
            sis_clim_std_file = file_monthly[:-3] + '_yseasstd.nc'
            cdo.yseasmean(options='-f nc -b 32', output=sis_clim_file, input=file_monthly, force=force_calc)
            cdo.yseassum(options='-f nc -b 32', output=sis_sum_file, input=file_monthly, force=force_calc)
            cdo.yseasstd(options='-f nc -b 32', output=sis_clim_std_file, input=file_monthly, force=force_calc)
            cdo.div(options='-f nc -b 32', output=sis_N_file, input=sis_sum_file + ' ' + sis_clim_file, force=force_calc)  # number of samples
        else:
            print interval
            raise ValueError('Unknown temporal interval. Can not perform preprocessing!')

        if not os.path.exists(sis_clim_file):
            return None

        #3) read data
        sis = Data(sis_clim_file, 'rsds', read=True, label=self._unique_name, unit='$W m^{-2}$', lat_name='lat', lon_name='lon', shift_lon=False)
        sis_std = Data(sis_clim_std_file, 'rsds', read=True, label=self._unique_name + ' std', unit='-', lat_name='lat', lon_name='lon', shift_lon=False)
        sis.std = sis_std.data.copy()
        del sis_std
        sis_N = Data(sis_N_file, 'rsds', read=True, label=self._unique_name + ' std', unit='-', lat_name='lat', lon_name='lon', shift_lon=False)
        sis.n = sis_N.data.copy()
        del sis_N

        #ensure that climatology always starts with January, therefore set date and then sort
        sis.adjust_time(year=1700, day=15)  # set arbitrary time for climatology
        sis.timsort()

        #4) read monthly data
        sisall = Data(file_monthly, 'rsds', read=True, label=self._unique_name, unit='W m^{-2}', lat_name='lat', lon_name='lon', shift_lon=False)
        if not sisall._is_monthly():
            raise ValueError('Timecycle of 12 expected here!')
        sisall.adjust_time(day=15)

        # land/sea masking ...
        if valid_mask == 'land':
            mask_antarctica = True
        elif valid_mask == 'ocean':
            mask_antarctica = False
        else:
            mask_antarctica = False
#.........這裏部分代碼省略.........
開發者ID:zengeo,項目名稱:pycmbs,代碼行數:103,代碼來源:cmip5.py

示例3: xxxxxget_surface_shortwave_radiation_up

# 需要導入模塊: from cdo import Cdo [as 別名]
# 或者: from cdo.Cdo import monmean [as 別名]
    def xxxxxget_surface_shortwave_radiation_up(self, interval='season', force_calc=False, **kwargs):

        the_variable = 'rsus'

        if self.type == 'CMIP5':
            filename1 = self.data_dir + the_variable + os.sep + self.experiment + os.sep + 'ready' + os.sep + self.model + os.sep + 'rsus_Amon_' + self.model + '_' + self.experiment + '_ensmean.nc'
        elif self.type == 'CMIP5RAW':  # raw CMIP5 data based on ensembles
            filename1 = self._get_ensemble_filename(the_variable)
        elif self.type == 'CMIP5RAWSINGLE':
            filename1 = self.get_single_ensemble_file(the_variable, mip='Amon', realm='atmos', temporal_resolution='mon')
        else:
            raise ValueError('Unknown type! not supported here!')

        if self.start_time is None:
            raise ValueError('Start time needs to be specified')
        if self.stop_time is None:
            raise ValueError('Stop time needs to be specified')

        if not os.path.exists(filename1):
            print ('WARNING file not existing: %s' % filename1)
            return None

        # PREPROCESSING
        cdo = Cdo()
        s_start_time = str(self.start_time)[0:10]
        s_stop_time = str(self.stop_time)[0:10]

        #1) select timeperiod and generate monthly mean file
        file_monthly = filename1[:-3] + '_' + s_start_time + '_' + s_stop_time + '_T63_monmean.nc'
        file_monthly = get_temporary_directory() + os.path.basename(file_monthly)
        cdo.monmean(options='-f nc', output=file_monthly, input='-remapcon,t63grid -seldate,' + s_start_time + ',' + s_stop_time + ' ' + filename1, force=force_calc)

        #2) calculate monthly or seasonal climatology
        if interval == 'monthly':
            sup_clim_file = file_monthly[:-3] + '_ymonmean.nc'
            sup_sum_file = file_monthly[:-3] + '_ymonsum.nc'
            sup_N_file = file_monthly[:-3] + '_ymonN.nc'
            sup_clim_std_file = file_monthly[:-3] + '_ymonstd.nc'
            cdo.ymonmean(options='-f nc -b 32', output=sup_clim_file, input=file_monthly, force=force_calc)
            cdo.ymonsum(options='-f nc -b 32', output=sup_sum_file, input=file_monthly, force=force_calc)
            cdo.ymonstd(options='-f nc -b 32', output=sup_clim_std_file, input=file_monthly, force=force_calc)
            cdo.div(options='-f nc', output=sup_N_file, input=sup_sum_file + ' ' + sup_clim_file, force=force_calc)  # number of samples
        elif interval == 'season':
            sup_clim_file = file_monthly[:-3] + '_yseasmean.nc'
            sup_sum_file = file_monthly[:-3] + '_yseassum.nc'
            sup_N_file = file_monthly[:-3] + '_yseasN.nc'
            sup_clim_std_file = file_monthly[:-3] + '_yseasstd.nc'
            cdo.yseasmean(options='-f nc -b 32', output=sup_clim_file, input=file_monthly, force=force_calc)
            cdo.yseassum(options='-f nc -b 32', output=sup_sum_file, input=file_monthly, force=force_calc)
            cdo.yseasstd(options='-f nc -b 32', output=sup_clim_std_file, input=file_monthly, force=force_calc)
            cdo.div(options='-f nc -b 32', output=sup_N_file, input=sup_sum_file + ' ' + sup_clim_file, force=force_calc)  # number of samples
        else:
            print interval
            raise ValueError('Unknown temporal interval. Can not perform preprocessing! ')

        if not os.path.exists(sup_clim_file):
            print 'File not existing (sup_clim_file): ' + sup_clim_file
            return None

        #3) read data
        sup = Data(sup_clim_file, 'rsus', read=True, label=self._unique_name, unit='$W m^{-2}$', lat_name='lat', lon_name='lon', shift_lon=False)
        sup_std = Data(sup_clim_std_file, 'rsus', read=True, label=self._unique_name + ' std', unit='-', lat_name='lat', lon_name='lon', shift_lon=False)
        sup.std = sup_std.data.copy()
        del sup_std
        sup_N = Data(sup_N_file, 'rsus', read=True, label=self._unique_name + ' std', unit='-', lat_name='lat', lon_name='lon', shift_lon=False)
        sup.n = sup_N.data.copy()
        del sup_N

        # ensure that climatology always starts with January, therefore set date and then sort
        sup.adjust_time(year=1700, day=15)  # set arbitrary time for climatology
        sup.timsort()

        #4) read monthly data
        supall = Data(file_monthly, 'rsus', read=True, label=self._unique_name, unit='$W m^{-2}$', lat_name='lat', lon_name='lon', shift_lon=False)
        supall.adjust_time(day=15)
        if not supall._is_monthly():
            raise ValueError('Monthly timecycle expected here!')
        supmean = supall.fldmean()

        #/// return data as a tuple list
        retval = (supall.time, supmean, supall)
        del supall

        #/// mask areas without radiation (set to invalid): all data < 1 W/m**2
        #sup.data = np.ma.array(sis.data,mask=sis.data < 1.)

        return sup, retval
開發者ID:zengeo,項目名稱:pycmbs,代碼行數:89,代碼來源:cmip5.py

示例4: _do_preprocessing

# 需要導入模塊: from cdo import Cdo [as 別名]
# 或者: from cdo.Cdo import monmean [as 別名]
    def _do_preprocessing(self, rawfile, varname, s_start_time, s_stop_time, interval='monthly', force_calc=False, valid_mask='global', target_grid='t63grid'):
        """
        perform preprocessing
        * selection of variable
        * temporal subsetting
        """
        cdo = Cdo()

        if not os.path.exists(rawfile):
            print('File not existing! %s ' % rawfile)
            return None, None

        # calculate monthly means
        file_monthly = get_temporary_directory() + os.sep + os.path.basename(rawfile[:-3]) + '_' + varname + '_' + s_start_time + '_' + s_stop_time + '_mm.nc'
        if (force_calc) or (not os.path.exists(file_monthly)):
            cdo.monmean(options='-f nc', output=file_monthly, input='-seldate,' + s_start_time + ',' + s_stop_time + ' ' + '-selvar,' + varname + ' ' + rawfile, force=force_calc)
        else:
            pass
        if not os.path.exists(file_monthly):
            raise ValueError('Monthly preprocessing did not work! %s ' % file_monthly)

        # calculate monthly or seasonal climatology
        if interval == 'monthly':
            mdata_clim_file = file_monthly[:-3] + '_ymonmean.nc'
            mdata_sum_file = file_monthly[:-3] + '_ymonsum.nc'
            mdata_N_file = file_monthly[:-3] + '_ymonN.nc'
            mdata_clim_std_file = file_monthly[:-3] + '_ymonstd.nc'
            cdo.ymonmean(options='-f nc -b 32', output=mdata_clim_file, input=file_monthly, force=force_calc)
            cdo.ymonsum(options='-f nc -b 32', output=mdata_sum_file, input=file_monthly, force=force_calc)
            cdo.ymonstd(options='-f nc -b 32', output=mdata_clim_std_file, input=file_monthly, force=force_calc)
            cdo.div(options='-f nc', output=mdata_N_file, input=mdata_sum_file + ' ' + mdata_clim_file, force=force_calc)  # number of samples
        elif interval == 'season':
            mdata_clim_file = file_monthly[:-3] + '_yseasmean.nc'
            mdata_sum_file = file_monthly[:-3] + '_yseassum.nc'
            mdata_N_file = file_monthly[:-3] + '_yseasN.nc'
            mdata_clim_std_file = file_monthly[:-3] + '_yseasstd.nc'
            cdo.yseasmean(options='-f nc -b 32', output=mdata_clim_file, input=file_monthly, force=force_calc)
            cdo.yseassum(options='-f nc -b 32', output=mdata_sum_file, input=file_monthly, force=force_calc)
            cdo.yseasstd(options='-f nc -b 32', output=mdata_clim_std_file, input=file_monthly, force=force_calc)
            cdo.div(options='-f nc -b 32', output=mdata_N_file, input=mdata_sum_file + ' ' + mdata_clim_file, force=force_calc)  # number of samples
        else:
            raise ValueError('Unknown temporal interval. Can not perform preprocessing!')

        if not os.path.exists(mdata_clim_file):
            return None

        # read data
        if interval == 'monthly':
            thetime_cylce = 12
        elif interval == 'season':
            thetime_cylce = 4
        else:
            print interval
            raise ValueError('Unsupported interval!')

        mdata = Data(mdata_clim_file, varname, read=True, label=self.name, shift_lon=False, time_cycle=thetime_cylce, lat_name='lat', lon_name='lon')
        mdata_std = Data(mdata_clim_std_file, varname, read=True, label=self.name + ' std', unit='-', shift_lon=False, time_cycle=thetime_cylce, lat_name='lat', lon_name='lon')
        mdata.std = mdata_std.data.copy()
        del mdata_std
        mdata_N = Data(mdata_N_file, varname, read=True, label=self.name + ' std', shift_lon=False, lat_name='lat', lon_name='lon')
        mdata.n = mdata_N.data.copy()
        del mdata_N

        # ensure that climatology always starts with January, therefore set date and then sort
        mdata.adjust_time(year=1700, day=15)  # set arbitrary time for climatology
        mdata.timsort()

        #4) read monthly data
        mdata_all = Data(file_monthly, varname, read=True, label=self.name, shift_lon=False, time_cycle=12, lat_name='lat', lon_name='lon')
        mdata_all.adjust_time(day=15)

        #mask_antarctica masks everything below 60 degree S.
        #here we only mask Antarctica, if only LAND points shall be used
        if valid_mask == 'land':
            mask_antarctica = True
        elif valid_mask == 'ocean':
            mask_antarctica = False
        else:
            mask_antarctica = False

        if target_grid == 't63grid':
            mdata._apply_mask(get_T63_landseamask(False, area=valid_mask, mask_antarctica=mask_antarctica))
            mdata_all._apply_mask(get_T63_landseamask(False, area=valid_mask, mask_antarctica=mask_antarctica))
        else:
            tmpmsk = get_generic_landseamask(False, area=valid_mask, target_grid=target_grid, mask_antarctica=mask_antarctica)
            mdata._apply_mask(tmpmsk)
            mdata_all._apply_mask(tmpmsk)
            del tmpmsk

        mdata_mean = mdata_all.fldmean()

        # return data as a tuple list
        retval = (mdata_all.time, mdata_mean, mdata_all)

        del mdata_all
        return mdata, retval
開發者ID:marcelorodriguesss,項目名稱:pycmbs,代碼行數:98,代碼來源:mpi_esm.py

示例5: get_jsbach_data_generic

# 需要導入模塊: from cdo import Cdo [as 別名]
# 或者: from cdo.Cdo import monmean [as 別名]
    def get_jsbach_data_generic(self, interval='season', **kwargs):
        """
        unique parameters are:
            filename - file basename
            variable - name of the variable as the short_name in the netcdf file

            kwargs is a dictionary with keys for each model. Then a dictionary with properties follows
        """

        if not self.type in kwargs.keys():
            print 'WARNING: it is not possible to get data using generic function, as method missing: ', self.type, kwargs.keys()
            return None

        print self.type
        print kwargs

        locdict = kwargs[self.type]

        # read settings and details from the keyword arguments
        # no defaults; everything should be explicitely specified in either the config file or the dictionaries

        varname = locdict.pop('variable')
        units = locdict.pop('unit', 'Unit not specified')

        lat_name = locdict.pop('lat_name', 'lat')
        lon_name = locdict.pop('lon_name', 'lon')
        #model_suffix = locdict.pop('model_suffix')
        #model_prefix = locdict.pop('model_prefix')
        file_format = locdict.pop('file_format')
        scf = locdict.pop('scale_factor')
        valid_mask = locdict.pop('valid_mask')
        custom_path = locdict.pop('custom_path', None)
        thelevel = locdict.pop('level', None)

        target_grid = self._actplot_options['targetgrid']
        interpolation = self._actplot_options['interpolation']

        if self.type != 'JSBACH_RAW2':
            print self.type
            raise ValueError('Invalid data format here!')

        # define from which stream of JSBACH data needs to be taken for specific variables
        if varname in ['swdown_acc', 'swdown_reflect_acc']:
            filename1 = self.files['jsbach']
        elif varname in ['precip_acc']:
            filename1 = self.files['land']
        elif varname in ['temp2']:
            filename1 = self.files['echam']
        elif varname in ['var14']:  # albedo vis
            filename1 = self.files['albedo_vis']
        elif varname in ['var15']:  # albedo NIR
            filename1 = self.files['albedo_nir']
        else:
            print varname
            raise ValueError('Unknown variable type for JSBACH_RAW2 processing!')

        force_calc = False

        if self.start_time is None:
            raise ValueError('Start time needs to be specified')
        if self.stop_time is None:
            raise ValueError('Stop time needs to be specified')

        #/// PREPROCESSING ///
        cdo = Cdo()
        s_start_time = str(self.start_time)[0:10]
        s_stop_time = str(self.stop_time)[0:10]

        #1) select timeperiod and generate monthly mean file
        if target_grid == 't63grid':
            gridtok = 'T63'
        else:
            gridtok = 'SPECIAL_GRID'

        file_monthly = filename1[:-3] + '_' + s_start_time + '_' + s_stop_time + '_' + gridtok + '_monmean.nc'  # target filename
        file_monthly = get_temporary_directory() + os.path.basename(file_monthly)

        sys.stdout.write('\n *** Model file monthly: %s\n' % file_monthly)

        if not os.path.exists(filename1):
            print 'WARNING: File not existing: ' + filename1
            return None

        cdo.monmean(options='-f nc', output=file_monthly, input='-' + interpolation + ',' + target_grid + ' -seldate,' + s_start_time + ',' + s_stop_time + ' ' + filename1, force=force_calc)

        sys.stdout.write('\n *** Reading model data... \n')
        sys.stdout.write('     Interval: ' + interval + '\n')

        #2) calculate monthly or seasonal climatology
        if interval == 'monthly':
            mdata_clim_file = file_monthly[:-3] + '_ymonmean.nc'
            mdata_sum_file = file_monthly[:-3] + '_ymonsum.nc'
            mdata_N_file = file_monthly[:-3] + '_ymonN.nc'
            mdata_clim_std_file = file_monthly[:-3] + '_ymonstd.nc'
            cdo.ymonmean(options='-f nc -b 32', output=mdata_clim_file, input=file_monthly, force=force_calc)
            cdo.ymonsum(options='-f nc -b 32', output=mdata_sum_file, input=file_monthly, force=force_calc)
            cdo.ymonstd(options='-f nc -b 32', output=mdata_clim_std_file, input=file_monthly, force=force_calc)
            cdo.div(options='-f nc', output=mdata_N_file, input=mdata_sum_file + ' ' + mdata_clim_file, force=force_calc)  # number of samples
        elif interval == 'season':
            mdata_clim_file = file_monthly[:-3] + '_yseasmean.nc'
#.........這裏部分代碼省略.........
開發者ID:marcelorodriguesss,項目名稱:pycmbs,代碼行數:103,代碼來源:mpi_esm.py

示例6: _preproc_streams

# 需要導入模塊: from cdo import Cdo [as 別名]
# 或者: from cdo.Cdo import monmean [as 別名]
    def _preproc_streams(self):
        """
        It is assumed that the standard JSBACH postprocessing scripts have been applied.
        Thus monthly mean data is available for each stream and code tables still need to be applied.

        This routine does the following:
        1) merge all times from individual (monthly mean) output files
        2) assign codetables to work with proper variable names
        3) aggregate data from tiles to gridbox values
        """

        print 'Preprocessing JSBACH raw data streams (may take a while) ...'

        cdo = Cdo()

        # jsbach stream
        print '   JSBACH stream ...'
        outfile = get_temporary_directory() + self.experiment + '_jsbach_mm_full.nc'
        if os.path.exists(outfile):
            pass
        else:
            codetable = self.data_dir + 'log/' + self.experiment + '_jsbach.codes'
            tmp = tempfile.mktemp(suffix='.nc', prefix=self.experiment + '_jsbach_', dir=get_temporary_directory())  # temporary file
            #~ print self.data_dir
            #~ print self.raw_outdata
            #~ print 'Files: ', self._get_filenames_jsbach_stream()
            #~ stop
            if len(glob.glob(self._get_filenames_jsbach_stream())) > 0:  # check if input files existing at all
                print 'Mering the following files:', self._get_filenames_jsbach_stream()
                cdo.mergetime(options='-f nc', output=tmp, input=self._get_filenames_jsbach_stream())
                if os.path.exists(codetable):
                    cdo.monmean(options='-f nc', output=outfile, input='-setpartab,' + codetable + ' ' + tmp)  # monmean needed here, as otherwise interface does not work
                else:
                    cdo.monmean(options='-f nc', output=outfile, input=tmp)  # monmean needed here, as otherwise interface does not work
                print 'Outfile: ', outfile
                #~ os.remove(tmp)

                print 'Temporary name: ', tmp

        self.files.update({'jsbach': outfile})

        # veg stream
        print '   VEG stream ...'
        outfile = get_temporary_directory() + self.experiment + '_jsbach_veg_mm_full.nc'
        if os.path.exists(outfile):
            pass
        else:
            codetable = self.data_dir + 'log/' + self.experiment + '_jsbach_veg.codes'
            tmp = tempfile.mktemp(suffix='.nc', prefix=self.experiment + '_jsbach_veg_', dir=get_temporary_directory())  # temporary file
            if len(glob.glob(self._get_filenames_veg_stream())) > 0:  # check if input files existing at all
                cdo.mergetime(options='-f nc', output=tmp, input=self._get_filenames_veg_stream())
                if os.path.exists(codetable):
                    cdo.monmean(options='-f nc', output=outfile, input='-setpartab,' + codetable + ' ' + tmp)  # monmean needed here, as otherwise interface does not work
                else:
                    cdo.monmean(options='-f nc', output=outfile, input=tmp)  # monmean needed here, as otherwise interface does not work
                os.remove(tmp)
        self.files.update({'veg': outfile})

        # veg land
        print '   LAND stream ...'
        outfile = get_temporary_directory() + self.experiment + '_jsbach_land_mm_full.nc'
        if os.path.exists(outfile):
            pass
        else:
            codetable = self.data_dir + 'log/' + self.experiment + '_jsbach_land.codes'
            tmp = tempfile.mktemp(suffix='.nc', prefix=self.experiment + '_jsbach_land_', dir=get_temporary_directory())  # temporary file
            if len(glob.glob(self._get_filenames_land_stream())) > 0:  # check if input files existing at all
                cdo.mergetime(options='-f nc', output=tmp, input=self._get_filenames_land_stream())
                if os.path.exists(codetable):
                    cdo.monmean(options='-f nc', output=outfile, input='-setpartab,' + codetable + ' ' + tmp)  # monmean needed here, as otherwise interface does not work
                else:
                    cdo.monmean(options='-f nc', output=outfile, input=tmp)  # monmean needed here, as otherwise interface does not work
                os.remove(tmp)
        self.files.update({'land': outfile})

        # surf stream
        print '   SURF stream ...'
        outfile = get_temporary_directory() + self.experiment + '_jsbach_surf_mm_full.nc'
        if os.path.exists(outfile):
            pass
        else:
            codetable = self.data_dir + 'log/' + self.experiment + '_jsbach_surf.codes'
            tmp = tempfile.mktemp(suffix='.nc', prefix=self.experiment + '_jsbach_surf_', dir=get_temporary_directory())  # temporary file
            if len(glob.glob(self._get_filenames_surf_stream())) > 0:  # check if input files existing at all
                print glob.glob(self._get_filenames_surf_stream())
                cdo.mergetime(options='-f nc', output=tmp, input=self._get_filenames_surf_stream())
                if os.path.exists(codetable):
                    cdo.monmean(options='-f nc', output=outfile, input='-setpartab,' + codetable + ' ' + tmp)  # monmean needed here, as otherwise interface does not work
                else:
                    cdo.monmean(options='-f nc', output=outfile, input=tmp)  # monmean needed here, as otherwise interface does not work
                os.remove(tmp)

        self.files.update({'surf': outfile})

        # ECHAM BOT stream
        print '   BOT stream ...'
        outfile = get_temporary_directory() + self.experiment + '_echam6_echam_mm_full.nc'
        if os.path.exists(outfile):
            pass
        else:
#.........這裏部分代碼省略.........
開發者ID:marcelorodriguesss,項目名稱:pycmbs,代碼行數:103,代碼來源:mpi_esm.py

示例7: get_generic_landseamask

# 需要導入模塊: from cdo import Cdo [as 別名]
# 或者: from cdo.Cdo import monmean [as 別名]
def get_generic_landseamask(shift_lon, mask_antarctica=True,
                            area='land', interpolation_method='remapnn',
                            target_grid='t63grid', force=False):
    """
    get generic land/sea mask. The routine uses the CDO command 'topo'
    to generate a 0.5 degree land/sea mask and remaps this
    using nearest neighbor
    to the target grid

    NOTE: using inconsistent land/sea masks between datasets can
    result in considerable biases. Note also that
    the application of l/s mask is dependent on the spatial resolution

    This routine implements a VERY simple approach, but assuming
    that all areas >0 m height are land and the rest is ocean.

    Parameters
    ----------
    shift_lon : bool
        specifies if longitudes shall be shifted
    interpolation_method : str
        specifies the interpolation method
        that shall be used for remapping the 0.5degree data
        to the target grid. This can be any of ['remapnn','remapcon',
        'remapbil']
    target_grid : str
        specifies target grid to interpolate to as
        similar to CDO remap functions. This can be either a string or
        a filename which includes valid geometry information
    force : bool
        force calculation (removes previous file) = slower

    area : str
        ['land','ocean']. When 'land', then the mask returned
        is True on land pixels, for ocean it is vice versa.
        in any other case, you get a valid field everywhere
        (globally)

    mask_antarctica : bool
        mask antarctica; if True, then the mask is
        FALSE over Antarctice (<60S)

    Returns
    -------
    returns a Data object
    """

    print ('WARNING: Automatic generation of land/sea mask. \
            Ensure that this is what you want!')

    cdo = Cdo()

    #/// construct output filename.
    #If a filename was given for the grid, replace path separators ///
    target_grid1 = target_grid.replace(os.sep, '_')
    outputfile = get_temporary_directory() + 'land_sea_fractions_' \
        + interpolation_method + '_' + target_grid1 + '.nc'

    print 'outfile: ', outputfile
    print 'cmd: ', '-remapnn,' + target_grid + ' -topo'

    #/// interpolate data to grid using CDO ///
    cdo.monmean(options='-f nc', output=outputfile,
                input='-remapnn,' + target_grid + ' -topo', force=force)

    #/// generate L/S mask from topography (land = height > 0.
    ls_mask = Data(outputfile, 'topo', read=True,
                   label='generic land-sea mask',
                   lat_name='lat', lon_name='lon',
                   shift_lon=shift_lon)
    print('Land/sea mask can be found on file: %s' % outputfile)

    if area == 'land':
        msk = ls_mask.data > 0.  # gives land
    elif area == 'ocean':
        msk = ls_mask.data <= 0.
    else:
        msk = np.ones(ls_mask.data.shape).astype('bool')
    ls_mask.data[~msk] = 0.
    ls_mask.data[msk] = 1.
    ls_mask.data = ls_mask.data.astype('bool')

    #/// mask Antarctica if desired ///
    if mask_antarctica:
        ls_mask.data[ls_mask.lat < -60.] = False
    return ls_mask
開發者ID:jian-peng,項目名稱:pycmbs,代碼行數:88,代碼來源:utils.py

示例8: get_model_data_generic

# 需要導入模塊: from cdo import Cdo [as 別名]
# 或者: from cdo.Cdo import monmean [as 別名]
    def get_model_data_generic(self, interval="season", **kwargs):
        """
        unique parameters are:
            filename - file basename
            variable - name of the variable as the short_name in the netcdf file

            kwargs is a dictionary with keys for each model. Then a dictionary with properties follows

        """

        if not self.type in kwargs.keys():
            print ""
            print "WARNING: it is not possible to get data using generic function, as method missing: ", self.type, kwargs.keys()
            assert False

        locdict = kwargs[self.type]

        # read settings and details from the keyword arguments
        # no defaults; everything should be explicitely specified in either the config file or the dictionaries
        varname = locdict.pop("variable", None)
        # ~ print self.type
        # ~ print locdict.keys()
        assert varname is not None, "ERROR: provide varname!"

        units = locdict.pop("unit", None)
        assert units is not None, "ERROR: provide unit!"

        lat_name = locdict.pop("lat_name", "lat")
        lon_name = locdict.pop("lon_name", "lon")
        model_suffix = locdict.pop("model_suffix", None)
        model_prefix = locdict.pop("model_prefix", None)
        file_format = locdict.pop("file_format")
        scf = locdict.pop("scale_factor")
        valid_mask = locdict.pop("valid_mask")
        custom_path = locdict.pop("custom_path", None)
        thelevel = locdict.pop("level", None)

        target_grid = self._actplot_options["targetgrid"]
        interpolation = self._actplot_options["interpolation"]

        if custom_path is None:
            filename1 = self.get_raw_filename(varname, **kwargs)  # routine needs to be implemented by each subclass
        else:
            filename1 = custom_path + self.get_raw_filename(varname, **kwargs)

        if filename1 is None:
            print_log(WARNING, "No valid model input data")
            return None

        force_calc = False

        if self.start_time is None:
            raise ValueError("Start time needs to be specified")
        if self.stop_time is None:
            raise ValueError("Stop time needs to be specified")

        # /// PREPROCESSING ///
        cdo = Cdo()
        s_start_time = str(self.start_time)[0:10]
        s_stop_time = str(self.stop_time)[0:10]

        # 1) select timeperiod and generate monthly mean file
        if target_grid == "t63grid":
            gridtok = "T63"
        else:
            gridtok = "SPECIAL_GRID"

        file_monthly = (
            filename1[:-3] + "_" + s_start_time + "_" + s_stop_time + "_" + gridtok + "_monmean.nc"
        )  # target filename
        file_monthly = get_temporary_directory() + os.path.basename(file_monthly)

        sys.stdout.write("\n *** Model file monthly: %s\n" % file_monthly)

        if not os.path.exists(filename1):
            print "WARNING: File not existing: " + filename1
            return None

        cdo.monmean(
            options="-f nc",
            output=file_monthly,
            input="-"
            + interpolation
            + ","
            + target_grid
            + " -seldate,"
            + s_start_time
            + ","
            + s_stop_time
            + " "
            + filename1,
            force=force_calc,
        )

        sys.stdout.write("\n *** Reading model data... \n")
        sys.stdout.write("     Interval: " + interval + "\n")

        # 2) calculate monthly or seasonal climatology
        if interval == "monthly":
            mdata_clim_file = file_monthly[:-3] + "_ymonmean.nc"
#.........這裏部分代碼省略.........
開發者ID:wk1984,項目名稱:pycmbs,代碼行數:103,代碼來源:cmip5.py


注:本文中的cdo.Cdo.monmean方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。