當前位置: 首頁>>代碼示例>>Python>>正文


Python CCDData.write方法代碼示例

本文整理匯總了Python中ccdproc.CCDData.write方法的典型用法代碼示例。如果您正苦於以下問題:Python CCDData.write方法的具體用法?Python CCDData.write怎麽用?Python CCDData.write使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在ccdproc.CCDData的用法示例。


在下文中一共展示了CCDData.write方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: MasterFlatTest

# 需要導入模塊: from ccdproc import CCDData [as 別名]
# 或者: from ccdproc.CCDData import write [as 別名]
class MasterFlatTest(TestCase):

    def setUp(self):
        # create a master flat
        self.master_flat = CCDData(data=np.ones((100, 100)),
                                   meta=fits.Header(),
                                   unit='adu')
        self.master_flat.header.set('GRATING', value='RALC_1200-BLUE')
        self.master_flat.header.set('SLIT', value='0.84" long slit')
        self.master_flat.header.set('FILTER2', value='<NO FILTER>')
        self.master_flat.header.set('WAVMODE', value='1200 m2')
        self.master_flat_name = 'master_flat_1200m2.fits'
        # expected master flat to be retrieved by get_best_flat
        self.reference_flat_name = 'master_flat_1200m2_0.84_dome.fits'
        # location of sample flats
        self.flat_path = 'goodman_pipeline/data/test_data/master_flat'
        slit = re.sub('[A-Za-z" ]',
                      '',
                      self.master_flat.header['SLIT'])
        self.flat_name_base = re.sub('.fits',
                                     '_' + slit + '*.fits',
                                     self.master_flat_name)

        # save a master flat with some random structure.

        self.master_flat_name_norm = 'flat_to_normalize.fits'
        # add a bias level
        self.master_flat.data += 300.
        # add noise
        self.master_flat.data += np.random.random_sample(
            self.master_flat.data.shape)

        self.master_flat.write(os.path.join(self.flat_path,
                                            self.master_flat_name_norm),
                               overwrite=False)

    def tearDown(self):
        full_path = os.path.join(self.flat_path,
                                 self.master_flat_name_norm)

        self.assertTrue(os.path.isfile(full_path))
        if os.path.isfile(full_path):
            os.unlink(full_path)
        self.assertFalse(os.path.isfile(full_path))

        # remove normalized flat
        norm_flat = re.sub('flat_to_', 'norm_flat_to_', full_path)
        if os.path.isfile(norm_flat):
            os.unlink(norm_flat)
        self.assertFalse(os.path.isfile(norm_flat))

    def test_get_best_flat(self):
        # print(self.flat_name_base)

        master_flat, master_flat_name = get_best_flat(
            flat_name=self.flat_name_base,
            path=self.flat_path)
        self.assertIsInstance(master_flat, CCDData)
        self.assertEqual(os.path.basename(master_flat_name),
                         self.reference_flat_name)

    def test_get_best_flat_fail(self):
        # Introduce an error that will never produce a result.
        wrong_flat_name = re.sub('1200m2', '1300m2', self.flat_name_base)
        master_flat, master_flat_name = get_best_flat(
            flat_name=wrong_flat_name,
            path=self.flat_path)
        self.assertIsNone(master_flat)
        self.assertIsNone(master_flat_name)

    def test_normalize_master_flat(self):
        methods = ['mean', 'simple', 'full']
        for method in methods:
            self.assertNotAlmostEqual(self.master_flat.data.mean(), 1.)
            normalized_flat, normalized_flat_name = normalize_master_flat(
                master=self.master_flat,
                name=os.path.join(self.flat_path,
                                  self.master_flat_name_norm),
                method=method)

            self.assertAlmostEqual(normalized_flat.data.mean(), 1.,
                                   delta=0.001)
            self.assertEqual(normalized_flat.header['GSP_NORM'], method)
            self.assertIn('norm_', normalized_flat_name)
開發者ID:simontorres,項目名稱:goodman,代碼行數:86,代碼來源:test_core.py

示例2: FitsFileIOAndOps

# 需要導入模塊: from ccdproc import CCDData [as 別名]
# 或者: from ccdproc.CCDData import write [as 別名]
class FitsFileIOAndOps(TestCase):

    def setUp(self):
        self.fake_image = CCDData(data=np.ones((100, 100)),
                                  meta=fits.Header(),
                                  unit='adu')

        self.file_name = 'sample_file.fits'
        self.target_non_zero = 4
        self.current_directory = os.getcwd()
        self.full_path = os.path.join(self.current_directory, self.file_name)
        self.parent_file = 'parent_file.fits'

        self.fake_image.header.set('CCDSUM',
                                   value='1 1',
                                   comment='Fake values')

        self.fake_image.header.set('OBSTYPE',
                                   value='OBJECT',
                                   comment='Fake values')

        self.fake_image.header.set('GSP_FNAM',
                                   value=self.file_name,
                                   comment='Fake values')

        self.fake_image.header.set('GSP_PNAM',
                                   value=self.parent_file,
                                   comment='Fake values')

        self.fake_image.write(self.full_path, overwrite=False)

    def test_write_fits(self):
        self.assertTrue(os.path.isfile(self.full_path))
        os.remove(self.full_path)
        write_fits(ccd=self.fake_image,
                   full_path=self.full_path,
                   parent_file=self.parent_file,
                   overwrite=False)
        self.assertTrue(os.path.isfile(self.full_path))

    def test_read_fits(self):
        self.recovered_fake_image = read_fits(self.full_path)
        self.assertIsInstance(self.recovered_fake_image, CCDData)

    def test_image_overscan(self):
        data_value = 100.
        overscan_value = 0.1
        # alter overscan region to a lower number
        self.fake_image.data *= data_value
        self.fake_image.data[:, 0:5] = overscan_value

        overscan_region = '[1:6,:]'
        self.assertEqual(self.fake_image.data[:, 6:99].mean(), data_value)
        self.assertEqual(self.fake_image.data[:, 0:5].mean(), overscan_value)
        self.fake_image = image_overscan(ccd=self.fake_image,
                                         overscan_region=overscan_region)

        self.assertEqual(self.fake_image.data[:, 6:99].mean(),
                         data_value - overscan_value)
        self.assertEqual(self.fake_image.header['GSP_OVER'], overscan_region)

    def test_image_overscan_none(self):
        new_fake_image = image_overscan(ccd=self.fake_image,
                                        overscan_region=None)
        self.assertEqual(new_fake_image, self.fake_image)

    def test_image_trim(self):
        self.assertEqual(self.fake_image.data.shape, (100, 100))
        trim_section = '[1:50,:]'
        self.fake_image = image_trim(ccd=self.fake_image,
                                     trim_section=trim_section,
                                     trim_type='trimsec')

        self.assertEqual(self.fake_image.data.shape, (100, 50))
        self.assertEqual(self.fake_image.header['GSP_TRIM'], trim_section)

    def test_save_extracted_target_zero(self):
        self.fake_image.header.set('GSP_FNAM', value=self.file_name)
        same_fake_image = save_extracted(ccd=self.fake_image,
                                         destination=self.current_directory,
                                         prefix='e',
                                         target_number=0)
        self.assertEqual(same_fake_image, self.fake_image)
        self.assertTrue(os.path.isfile('e' + self.file_name))

    def test_save_extracted_target_non_zero(self):
        self.fake_image.header.set('GSP_FNAM', value=self.file_name)
        same_fake_image = save_extracted(ccd=self.fake_image,
                                         destination=self.current_directory,
                                         prefix='e',
                                         target_number=self.target_non_zero)
        self.assertEqual(same_fake_image, self.fake_image)
        self.assertTrue(os.path.isfile('e' + re.sub('.fits',
                                       '_target_{:d}.fits'.format(
                                           self.target_non_zero),
                                       self.file_name)))

    def test_save_extracted_target_zero_comp(self):
        self.fake_image.header.set('GSP_FNAM', value=self.file_name)
        self.fake_image.header.set('OBSTYPE', value='COMP')
#.........這裏部分代碼省略.........
開發者ID:simontorres,項目名稱:goodman,代碼行數:103,代碼來源:test_core.py

示例3: CCDData

# 需要導入模塊: from ccdproc import CCDData [as 別名]
# 或者: from ccdproc.CCDData import write [as 別名]
    ccd = ccdproc.subtract_bias(ccd, master_bias_blue)
    blue_flat_list.append(ccd)
master_flat_blue = ccdproc.combine(blue_flat_list, method='median')
master_flat_blue.write('master_flat_blue.fits', clobber=True)

#reduce the arc frames
for filename in ic1.files_filtered(obstype='Arc', isiarm='Blue arm'):
    hdu = fits.open(ic1.location + filename)
    ccd = CCDData(hdu[1].data, header=hdu[0].header+hdu[1].header, unit = u.adu)
    #this has to be fixed as the bias section does not include the whole section that will be trimmed
    ccd = ccdproc.subtract_overscan(ccd, median=True,  overscan_axis=0, fits_section='[1:966,4105:4190]')
    ccd = ccdproc.trim_image(ccd, fits_section=ccd.header['TRIMSEC'] )
    ccd = ccdproc.subtract_bias(ccd, master_bias_blue)
    ccd = ccdproc.flat_correct(ccd, master_flat_blue)
    ccd.data = ccd.data.T
    ccd.write('arc_'+filename, clobber=True)

red_flat_list = []
for filename in ic1.files_filtered(obstype='Arc', isiarm='Red arm'):
    hdu = fits.open(ic1.location + filename)
    ccd = CCDData(hdu[1].data, header=hdu[0].header+hdu[1].header, unit = u.adu)
    #this has to be fixed as the bias section does not include the whole section that will be trimmed
    ccd = ccdproc.subtract_overscan(ccd, median=True,  overscan_axis=0, fits_section='[1:966,4105:4190]')
    ccd = ccdproc.trim_image(ccd, fits_section=ccd.header['TRIMSEC'] )
    ccd = ccdproc.subtract_bias(ccd, master_bias_red)
    ccd = ccdproc.flat_correct(ccd, master_flat_red)
    ccd.data = ccd.data.T
    ccd.write('arc_'+filename, clobber=True)

#reduce the sky frames
for filename in ic1.files_filtered(obstype='Sky', isiarm='Blue arm'):
開發者ID:crawfordsm,項目名稱:wht_reduction_scripts,代碼行數:33,代碼來源:wht_basic_reductions.py


注:本文中的ccdproc.CCDData.write方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。