本文整理匯總了Python中ccdproc.CCDData.write方法的典型用法代碼示例。如果您正苦於以下問題:Python CCDData.write方法的具體用法?Python CCDData.write怎麽用?Python CCDData.write使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類ccdproc.CCDData
的用法示例。
在下文中一共展示了CCDData.write方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: MasterFlatTest
# 需要導入模塊: from ccdproc import CCDData [as 別名]
# 或者: from ccdproc.CCDData import write [as 別名]
class MasterFlatTest(TestCase):
def setUp(self):
# create a master flat
self.master_flat = CCDData(data=np.ones((100, 100)),
meta=fits.Header(),
unit='adu')
self.master_flat.header.set('GRATING', value='RALC_1200-BLUE')
self.master_flat.header.set('SLIT', value='0.84" long slit')
self.master_flat.header.set('FILTER2', value='<NO FILTER>')
self.master_flat.header.set('WAVMODE', value='1200 m2')
self.master_flat_name = 'master_flat_1200m2.fits'
# expected master flat to be retrieved by get_best_flat
self.reference_flat_name = 'master_flat_1200m2_0.84_dome.fits'
# location of sample flats
self.flat_path = 'goodman_pipeline/data/test_data/master_flat'
slit = re.sub('[A-Za-z" ]',
'',
self.master_flat.header['SLIT'])
self.flat_name_base = re.sub('.fits',
'_' + slit + '*.fits',
self.master_flat_name)
# save a master flat with some random structure.
self.master_flat_name_norm = 'flat_to_normalize.fits'
# add a bias level
self.master_flat.data += 300.
# add noise
self.master_flat.data += np.random.random_sample(
self.master_flat.data.shape)
self.master_flat.write(os.path.join(self.flat_path,
self.master_flat_name_norm),
overwrite=False)
def tearDown(self):
full_path = os.path.join(self.flat_path,
self.master_flat_name_norm)
self.assertTrue(os.path.isfile(full_path))
if os.path.isfile(full_path):
os.unlink(full_path)
self.assertFalse(os.path.isfile(full_path))
# remove normalized flat
norm_flat = re.sub('flat_to_', 'norm_flat_to_', full_path)
if os.path.isfile(norm_flat):
os.unlink(norm_flat)
self.assertFalse(os.path.isfile(norm_flat))
def test_get_best_flat(self):
# print(self.flat_name_base)
master_flat, master_flat_name = get_best_flat(
flat_name=self.flat_name_base,
path=self.flat_path)
self.assertIsInstance(master_flat, CCDData)
self.assertEqual(os.path.basename(master_flat_name),
self.reference_flat_name)
def test_get_best_flat_fail(self):
# Introduce an error that will never produce a result.
wrong_flat_name = re.sub('1200m2', '1300m2', self.flat_name_base)
master_flat, master_flat_name = get_best_flat(
flat_name=wrong_flat_name,
path=self.flat_path)
self.assertIsNone(master_flat)
self.assertIsNone(master_flat_name)
def test_normalize_master_flat(self):
methods = ['mean', 'simple', 'full']
for method in methods:
self.assertNotAlmostEqual(self.master_flat.data.mean(), 1.)
normalized_flat, normalized_flat_name = normalize_master_flat(
master=self.master_flat,
name=os.path.join(self.flat_path,
self.master_flat_name_norm),
method=method)
self.assertAlmostEqual(normalized_flat.data.mean(), 1.,
delta=0.001)
self.assertEqual(normalized_flat.header['GSP_NORM'], method)
self.assertIn('norm_', normalized_flat_name)
示例2: FitsFileIOAndOps
# 需要導入模塊: from ccdproc import CCDData [as 別名]
# 或者: from ccdproc.CCDData import write [as 別名]
class FitsFileIOAndOps(TestCase):
def setUp(self):
self.fake_image = CCDData(data=np.ones((100, 100)),
meta=fits.Header(),
unit='adu')
self.file_name = 'sample_file.fits'
self.target_non_zero = 4
self.current_directory = os.getcwd()
self.full_path = os.path.join(self.current_directory, self.file_name)
self.parent_file = 'parent_file.fits'
self.fake_image.header.set('CCDSUM',
value='1 1',
comment='Fake values')
self.fake_image.header.set('OBSTYPE',
value='OBJECT',
comment='Fake values')
self.fake_image.header.set('GSP_FNAM',
value=self.file_name,
comment='Fake values')
self.fake_image.header.set('GSP_PNAM',
value=self.parent_file,
comment='Fake values')
self.fake_image.write(self.full_path, overwrite=False)
def test_write_fits(self):
self.assertTrue(os.path.isfile(self.full_path))
os.remove(self.full_path)
write_fits(ccd=self.fake_image,
full_path=self.full_path,
parent_file=self.parent_file,
overwrite=False)
self.assertTrue(os.path.isfile(self.full_path))
def test_read_fits(self):
self.recovered_fake_image = read_fits(self.full_path)
self.assertIsInstance(self.recovered_fake_image, CCDData)
def test_image_overscan(self):
data_value = 100.
overscan_value = 0.1
# alter overscan region to a lower number
self.fake_image.data *= data_value
self.fake_image.data[:, 0:5] = overscan_value
overscan_region = '[1:6,:]'
self.assertEqual(self.fake_image.data[:, 6:99].mean(), data_value)
self.assertEqual(self.fake_image.data[:, 0:5].mean(), overscan_value)
self.fake_image = image_overscan(ccd=self.fake_image,
overscan_region=overscan_region)
self.assertEqual(self.fake_image.data[:, 6:99].mean(),
data_value - overscan_value)
self.assertEqual(self.fake_image.header['GSP_OVER'], overscan_region)
def test_image_overscan_none(self):
new_fake_image = image_overscan(ccd=self.fake_image,
overscan_region=None)
self.assertEqual(new_fake_image, self.fake_image)
def test_image_trim(self):
self.assertEqual(self.fake_image.data.shape, (100, 100))
trim_section = '[1:50,:]'
self.fake_image = image_trim(ccd=self.fake_image,
trim_section=trim_section,
trim_type='trimsec')
self.assertEqual(self.fake_image.data.shape, (100, 50))
self.assertEqual(self.fake_image.header['GSP_TRIM'], trim_section)
def test_save_extracted_target_zero(self):
self.fake_image.header.set('GSP_FNAM', value=self.file_name)
same_fake_image = save_extracted(ccd=self.fake_image,
destination=self.current_directory,
prefix='e',
target_number=0)
self.assertEqual(same_fake_image, self.fake_image)
self.assertTrue(os.path.isfile('e' + self.file_name))
def test_save_extracted_target_non_zero(self):
self.fake_image.header.set('GSP_FNAM', value=self.file_name)
same_fake_image = save_extracted(ccd=self.fake_image,
destination=self.current_directory,
prefix='e',
target_number=self.target_non_zero)
self.assertEqual(same_fake_image, self.fake_image)
self.assertTrue(os.path.isfile('e' + re.sub('.fits',
'_target_{:d}.fits'.format(
self.target_non_zero),
self.file_name)))
def test_save_extracted_target_zero_comp(self):
self.fake_image.header.set('GSP_FNAM', value=self.file_name)
self.fake_image.header.set('OBSTYPE', value='COMP')
#.........這裏部分代碼省略.........
示例3: CCDData
# 需要導入模塊: from ccdproc import CCDData [as 別名]
# 或者: from ccdproc.CCDData import write [as 別名]
ccd = ccdproc.subtract_bias(ccd, master_bias_blue)
blue_flat_list.append(ccd)
master_flat_blue = ccdproc.combine(blue_flat_list, method='median')
master_flat_blue.write('master_flat_blue.fits', clobber=True)
#reduce the arc frames
for filename in ic1.files_filtered(obstype='Arc', isiarm='Blue arm'):
hdu = fits.open(ic1.location + filename)
ccd = CCDData(hdu[1].data, header=hdu[0].header+hdu[1].header, unit = u.adu)
#this has to be fixed as the bias section does not include the whole section that will be trimmed
ccd = ccdproc.subtract_overscan(ccd, median=True, overscan_axis=0, fits_section='[1:966,4105:4190]')
ccd = ccdproc.trim_image(ccd, fits_section=ccd.header['TRIMSEC'] )
ccd = ccdproc.subtract_bias(ccd, master_bias_blue)
ccd = ccdproc.flat_correct(ccd, master_flat_blue)
ccd.data = ccd.data.T
ccd.write('arc_'+filename, clobber=True)
red_flat_list = []
for filename in ic1.files_filtered(obstype='Arc', isiarm='Red arm'):
hdu = fits.open(ic1.location + filename)
ccd = CCDData(hdu[1].data, header=hdu[0].header+hdu[1].header, unit = u.adu)
#this has to be fixed as the bias section does not include the whole section that will be trimmed
ccd = ccdproc.subtract_overscan(ccd, median=True, overscan_axis=0, fits_section='[1:966,4105:4190]')
ccd = ccdproc.trim_image(ccd, fits_section=ccd.header['TRIMSEC'] )
ccd = ccdproc.subtract_bias(ccd, master_bias_red)
ccd = ccdproc.flat_correct(ccd, master_flat_red)
ccd.data = ccd.data.T
ccd.write('arc_'+filename, clobber=True)
#reduce the sky frames
for filename in ic1.files_filtered(obstype='Sky', isiarm='Blue arm'):