本文整理匯總了Python中cassandra.util.OrderedDict類的典型用法代碼示例。如果您正苦於以下問題:Python OrderedDict類的具體用法?Python OrderedDict怎麽用?Python OrderedDict使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
在下文中一共展示了OrderedDict類的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __new__
def __new__(cls, name, bases, attrs):
field_dict = OrderedDict()
field_defs = [(k.decode('utf-8'), v) for k, v in attrs.items() if isinstance(v, columns.Column)]
field_defs = sorted(field_defs, key=lambda x: x[1].position)
def _transform_column(field_name, field_obj):
field_dict[field_name] = field_obj
field_obj.set_column_name(field_name)
attrs[field_name] = models.ColumnDescriptor(field_obj)
# transform field definitions
for k, v in field_defs:
# don't allow a field with the same name as a built-in attribute or method
if k in BaseUserType.__dict__:
raise UserTypeDefinitionException("field '{0}' conflicts with built-in attribute/method".format(k))
_transform_column(k, v)
# create db_name -> model name map for loading
db_map = {}
for field_name, field in field_dict.items():
db_map[field.db_field_name] = field_name
attrs['_fields'] = field_dict
attrs['_db_map'] = db_map
klass = super(UserTypeMetaClass, cls).__new__(cls, name, bases, attrs)
return klass
示例2: __init__
def __init__(self, keyspace_metadata, name, partition_key=None, clustering_key=None, columns=None, triggers=None, options=None):
self.keyspace = keyspace_metadata
self.name = name
self.partition_key = [] if partition_key is None else partition_key
self.clustering_key = [] if clustering_key is None else clustering_key
self.columns = OrderedDict() if columns is None else columns
self.options = options
self.comparator = None
self.triggers = OrderedDict() if triggers is None else triggers
示例3: TableMetadata
#.........這裏部分代碼省略.........
"memtable_flush_period_in_ms",
"populate_io_cache_on_flush",
"compaction",
"compression",
"default_time_to_live")
compaction_options = {
"min_compaction_threshold": "min_threshold",
"max_compaction_threshold": "max_threshold",
"compaction_strategy_class": "class"}
triggers = None
"""
A dict mapping trigger names to :class:`.TriggerMetadata` instances.
"""
@property
def is_cql_compatible(self):
"""
A boolean indicating if this table can be represented as CQL in export
"""
# no such thing as DCT in CQL
incompatible = issubclass(self.comparator, types.DynamicCompositeType)
# no compact storage with more than one column beyond PK
incompatible |= self.is_compact_storage and len(self.columns) > len(self.primary_key) + 1
return not incompatible
def __init__(self, keyspace_metadata, name, partition_key=None, clustering_key=None, columns=None, triggers=None, options=None):
self.keyspace = keyspace_metadata
self.name = name
self.partition_key = [] if partition_key is None else partition_key
self.clustering_key = [] if clustering_key is None else clustering_key
self.columns = OrderedDict() if columns is None else columns
self.options = options
self.comparator = None
self.triggers = OrderedDict() if triggers is None else triggers
def export_as_string(self):
"""
Returns a string of CQL queries that can be used to recreate this table
along with all indexes on it. The returned string is formatted to
be human readable.
"""
if self.is_cql_compatible:
ret = self.all_as_cql()
else:
# If we can't produce this table with CQL, comment inline
ret = "/*\nWarning: Table %s.%s omitted because it has constructs not compatible with CQL (was created via legacy API).\n" % \
(self.keyspace.name, self.name)
ret += "\nApproximate structure, for reference:\n(this should not be used to reproduce this schema)\n\n%s" % self.all_as_cql()
ret += "\n*/"
return ret
def all_as_cql(self):
ret = self.as_cql_query(formatted=True)
ret += ";"
for col_meta in self.columns.values():
if col_meta.index:
ret += "\n%s;" % (col_meta.index.as_cql_query(),)
for trigger_meta in self.triggers.values():
ret += "\n%s;" % (trigger_meta.as_cql_query(),)
return ret
示例4: __new__
def __new__(cls, name, bases, attrs):
# move column definitions into columns dict
# and set default column names
column_dict = OrderedDict()
primary_keys = OrderedDict()
pk_name = None
# get inherited properties
inherited_columns = OrderedDict()
for base in bases:
for k, v in getattr(base, '_defined_columns', {}).items():
inherited_columns.setdefault(k, v)
# short circuit __abstract__ inheritance
is_abstract = attrs['__abstract__'] = attrs.get('__abstract__', False)
# short circuit __discriminator_value__ inheritance
attrs['__discriminator_value__'] = attrs.get('__discriminator_value__')
# TODO __default__ttl__ should be removed in the next major release
options = attrs.get('__options__') or {}
attrs['__default_ttl__'] = options.get('default_time_to_live')
column_definitions = [(k, v) for k, v in attrs.items() if isinstance(v, columns.Column)]
column_definitions = sorted(column_definitions, key=lambda x: x[1].position)
is_polymorphic_base = any([c[1].discriminator_column for c in column_definitions])
column_definitions = [x for x in inherited_columns.items()] + column_definitions
discriminator_columns = [c for c in column_definitions if c[1].discriminator_column]
is_polymorphic = len(discriminator_columns) > 0
if len(discriminator_columns) > 1:
raise ModelDefinitionException('only one discriminator_column can be defined in a model, {0} found'.format(len(discriminator_columns)))
if attrs['__discriminator_value__'] and not is_polymorphic:
raise ModelDefinitionException('__discriminator_value__ specified, but no base columns defined with discriminator_column=True')
discriminator_column_name, discriminator_column = discriminator_columns[0] if discriminator_columns else (None, None)
if isinstance(discriminator_column, (columns.BaseContainerColumn, columns.Counter)):
raise ModelDefinitionException('counter and container columns cannot be used as discriminator columns')
# find polymorphic base class
polymorphic_base = None
if is_polymorphic and not is_polymorphic_base:
def _get_polymorphic_base(bases):
for base in bases:
if getattr(base, '_is_polymorphic_base', False):
return base
klass = _get_polymorphic_base(base.__bases__)
if klass:
return klass
polymorphic_base = _get_polymorphic_base(bases)
defined_columns = OrderedDict(column_definitions)
# check for primary key
if not is_abstract and not any([v.primary_key for k, v in column_definitions]):
raise ModelDefinitionException("At least 1 primary key is required.")
counter_columns = [c for c in defined_columns.values() if isinstance(c, columns.Counter)]
data_columns = [c for c in defined_columns.values() if not c.primary_key and not isinstance(c, columns.Counter)]
if counter_columns and data_columns:
raise ModelDefinitionException('counter models may not have data columns')
has_partition_keys = any(v.partition_key for (k, v) in column_definitions)
def _transform_column(col_name, col_obj):
column_dict[col_name] = col_obj
if col_obj.primary_key:
primary_keys[col_name] = col_obj
col_obj.set_column_name(col_name)
# set properties
attrs[col_name] = ColumnDescriptor(col_obj)
partition_key_index = 0
# transform column definitions
for k, v in column_definitions:
# don't allow a column with the same name as a built-in attribute or method
if k in BaseModel.__dict__:
raise ModelDefinitionException("column '{0}' conflicts with built-in attribute/method".format(k))
# counter column primary keys are not allowed
if (v.primary_key or v.partition_key) and isinstance(v, columns.Counter):
raise ModelDefinitionException('counter columns cannot be used as primary keys')
# this will mark the first primary key column as a partition
# key, if one hasn't been set already
if not has_partition_keys and v.primary_key:
v.partition_key = True
has_partition_keys = True
if v.partition_key:
v._partition_key_index = partition_key_index
partition_key_index += 1
overriding = column_dict.get(k)
if overriding:
v.position = overriding.position
v.partition_key = overriding.partition_key
v._partition_key_index = overriding._partition_key_index
#.........這裏部分代碼省略.........