本文整理匯總了Python中bson.SON.copy方法的典型用法代碼示例。如果您正苦於以下問題:Python SON.copy方法的具體用法?Python SON.copy怎麽用?Python SON.copy使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類bson.SON
的用法示例。
在下文中一共展示了SON.copy方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: train_test_loop
# 需要導入模塊: from bson import SON [as 別名]
# 或者: from bson.SON import copy [as 別名]
def train_test_loop(outfile,extract_creates,task_config,feature_config_path,hash):
feature_config = get_config(feature_config_path)
base_query = SON([('__config_hash__',hash)])
image_params = SON([('image',feature_config['image'])])
models_params = feature_config['models']
ntrain = task_config['ntrain']
ntest = task_config['ntest']
ntrain_pos = task_config.get('ntrain_pos')
N = task_config.get('N',10)
query = task_config['query']
base_query.update(reach_in('config',task_config.get('universe',SON([]))))
print('\n')
print('BASE',base_query)
print('\n')
conn = pm.Connection(document_class=SON)
db = conn['v1']
fs = gridfs.GridFS(db, collection = 'model_performance')
cquery = reach_in('config',query)
for m in models_params:
base_query_copy = base_query.copy()
base_query_copy.update(reach_in('config.model',m))
splitdata, results = train_test(cquery,'v1','features',ntrain,ntest,ntrain_pos=ntrain_pos,N=N,universe=base_query_copy)
splitpickle = cPickle.dumps(splitdata)
data = SON([('feature_config_path',feature_config_path),
('model',m),
('task',son_escape(task_config)),
('image__aggregate__',son_escape(feature_config['image']))])
filename = get_filename(data)
data.update(results)
data['filename'] = filename
fs.put(splitpickle,**data)
createCertificateDict(outfile,{'task_config':task_config,'feature_config':feature_config,'feature_config_path':feature_config_path})
示例2: write_outcerts
# 需要導入模塊: from bson import SON [as 別名]
# 或者: from bson.SON import copy [as 別名]
def write_outcerts(func, configs, incertdicts, outcertpaths, db):
if incertdicts:
old_param_names = dict_union([op["param_names"] for op in incertdicts])
else:
old_param_names = SON([])
new_param_names = uniqify(ListUnion([x.keys() for x in configs]))
for (outcertpath, outroot) in zip(outcertpaths, func.outroots):
param_names = old_param_names.copy()
param_names[outroot] = new_param_names
remove_incorrect(db, outroot, func.outconfig_string, func.outrun_hash)
createCertificateDict(
outcertpath,
{
"run_hash": func.outrun_hash,
"db": func.dbname,
"out_args": func.out_args,
"root": outroot,
"config_hash": func.outconfig_string,
"param_names": param_names,
},
)
示例3: SON
# 需要導入模塊: from bson import SON [as 別名]
# 或者: from bson.SON import copy [as 別名]
# - output local normalization
('normout', SON([
# kernel shape of the local normalization
('kshape', (3,3)),
# magnitude threshold
# if the vector's length is below, it doesn't get resized
('threshold', 1.0),
])),
])
models = []
for ac in sp.arange(.25,.3,.01):
m = base_model.copy()
m['activ'] = m['activ'].copy()
m['activ']['minout'] = ac
models.append(m)
# dict with all representation parameters
config = {
'models': models,
'image' : SON([
('generator' , 'cairo'),
('width' , 64),
('height' , 64),
('objects' , [cairo_objects.SQUARE]),
('patterns' , [cairo_objects.SOLID_RED]),
開發者ID:yamins81,項目名稱:v1framework,代碼行數:32,代碼來源:config_pull_cairofilters_sq_vs_rect_various_activations_finefinetuning.py
示例4: or
# 需要導入模塊: from bson import SON [as 別名]
# 或者: from bson.SON import copy [as 別名]
# Include color histograms ? None or nbins per color
('input_colorhists' , None),
# Include input norm histograms ? None or (division, nfeatures)
('normin_hists' , None),
# Include filter output histograms ? None or (division, nfeatures)
('filter_hists' , None),
# Include activation output histograms ? None or (division, nfeatures)
('activ_hists' , None),
# Include output norm histograms ? None or (division, nfeatures)
('normout_hists' , None),
# Include representation output histograms ? None or (division, nfeatures)
('pool_hists' , None),
]))
])
model2 = model1.copy()
model2['filter'] = SON([
('model_name','random_gabor'),
('kshape' , [43,43]),
('max_wavelength',18),
('min_wavelength',2),
('num_filters',96),
])
model3 = model1.copy()
model3['filter'] = SON([
('model_name','really_random'),
('kshape' , [43,43]),
('num_filters' , 96),
])
示例5: SON
# 需要導入模塊: from bson import SON [as 別名]
# 或者: from bson.SON import copy [as 別名]
])),
# - output local normalization
('normout', SON([
# kernel shape of the local normalization
('kshape', (3,3)),
# magnitude threshold
# if the vector's length is below, it doesn't get resized
('threshold', 1.0),
])),
])
# dict with all representation parameters
models = [model.copy() for ind in range(10)]
for (i,m) in enumerate(models):
m['ind'] = i
config = {
'models': models,
'image' : SON([
('generator' , 'cairo'),
('width' , 64),
('height' , 64),
('objects' , [cairo_objects.SQUARE]),
('patterns' , [cairo_objects.SOLID_RED]),
('tx' , SON([('$gt' , -.4) , ('$lt' , .401) , ('delta' , .02)])),
('ty' , SON([('$gt' , -.4) , ('$lt' , .401) , ('delta' , .02)])),
開發者ID:yamins81,項目名稱:v1framework,代碼行數:33,代碼來源:config_pull_random_gabors_sq_vs_rect_twofilter_screen.py
示例6: SON
# 需要導入模塊: from bson import SON [as 別名]
# 或者: from bson.SON import copy [as 別名]
# - output local normalization
('normout', SON([
# kernel shape of the local normalization
('kshape', (3,3)),
# magnitude threshold
# if the vector's length is below, it doesn't get resized
('threshold', 1.0),
])),
])
models = []
for divfreq in [2,6,10]:
for kshape in [[20,20],[32,32],[43,43]]:
m = model.copy()
m['filter'] = model['filter'].copy()
m['filter']['kshape'] = kshape
m['filter']['divfreqs'] = [divfreq]
models.append(m)
# dict with all representation parameters
config = {
'models': models,
'image' : SON([
('generator' , 'cairo'),
('width' , 64),
('height' , 64),
('objects' , [cairo_objects.SQUARE]),
開發者ID:yamins81,項目名稱:v1framework,代碼行數:33,代碼來源:config_pull_gridded_gabors_sq_vs_rect_various_two_orientation_lrl.py