當前位置: 首頁>>代碼示例>>Python>>正文


Python group.Group類代碼示例

本文整理匯總了Python中brian2.groups.group.Group的典型用法代碼示例。如果您正苦於以下問題:Python Group類的具體用法?Python Group怎麽用?Python Group使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。


在下文中一共展示了Group類的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

    def __init__(self, synapses, code, prepost, objname=None):
        self.code = code
        if prepost == 'pre':
            self.source = synapses.source
            self.target = synapses.target
            self.synapse_indices = synapses.item_mapping.pre_synaptic
        elif prepost == 'post':
            self.source = synapses.target
            self.target = synapses.source
            self.synapse_indices = synapses.item_mapping.post_synaptic
        else:
            raise ValueError('prepost argument has to be either "pre" or '
                             '"post"')
        self.synapses = synapses

        if objname is None:
            objname = prepost + '*'

        GroupCodeRunner.__init__(self, synapses,
                                 'synapses',
                                 code=code,
                                 when=(synapses.clock, 'synapses'),
                                 name=synapses.name + '_' + objname)

        self._delays = DynamicArray1D(synapses.N, dtype=np.float64)
        # Register the object with the `SynapticIndex` object so it gets
        # automatically resized
        synapses.item_mapping.register_variable(self._delays)
        self.queue = SpikeQueue()
        self.spiking_synapses = []
        self.variables = {'_spiking_synapses': AttributeVariable(Unit(1),
                                                                  self,
                                                                  'spiking_synapses',
                                                                  constant=False),
                          '_source_offset': Variable(Unit(1), self.source.offset,
                                                     constant=True),
                          '_target_offset': Variable(Unit(1), self.target.offset,
                                                     constant=True),
                           'delay': DynamicArrayVariable('delay', second,
                                                          self._delays,
                                                          group_name=self.name,
                                                          constant=True)}


        # Re-extract the last part of the name from the full name
        self.objname = self.name[len(synapses.name) + 1:]

        #: The simulation dt (necessary for the delays)
        self.dt = self.synapses.clock.dt_

        self.item_mapping = synapses.item_mapping

        self.indices = self.synapses.indices

        # Enable access to the delay attribute via the specifier
        Group.__init__(self)
開發者ID:yayyme,項目名稱:brian2,代碼行數:56,代碼來源:synapses.py

示例2: __init__

    def __init__(self, source, start, stop, name=None):
        # First check if the source is itself a Subgroup
        # If so, then make this a Subgroup of the original Group
        if isinstance(source, Subgroup):
            source = source.source
            start = start + source.start
            stop = stop + source.start
            self.source = source
        else:
            self.source = weakproxy_with_fallback(source)

        if name is None:
            name = source.name + '_subgroup*'
        # We want to update the spikes attribute after it has been updated
        # by the parent, we do this in slot 'thresholds' with an order
        # one higher than the parent order to ensure it takes place after the
        # parent threshold operation
        schedule = Scheduler(clock=source.clock, when='thresholds',
                             order=source.order+1)
        Group.__init__(self, when=schedule, name=name)
        self._N = stop-start
        self.start = start
        self.stop = stop

        # All the variables have to go via the _sub_idx to refer to the
        # appropriate values in the source group
        self.variables = Variables(self, default_index='_sub_idx')

        # overwrite the meaning of N and i
        self.variables.add_constant('_offset', unit=Unit(1), value=self.start)
        self.variables.add_reference('_source_i', source, 'i')
        self.variables.add_subexpression('i', unit=Unit(1),
                                         dtype=source.variables['i'].dtype,
                                         expr='_source_i - _offset')
        self.variables.add_constant('N', unit=Unit(1), value=self._N)
        # add references for all variables in the original group
        self.variables.add_references(source, source.variables.keys())

        # Only the variable _sub_idx itself is stored in the subgroup
        # and needs the normal index for this group
        self.variables.add_arange('_sub_idx', size=self._N, start=self.start,
                                  index='_idx')

        for key, value in self.source.variables.indices.iteritems():
            if value not in ('_idx', '0'):
                raise ValueError(('Do not know how to deal with variable %s '
                                  'using  index %s in a subgroup') % (key,
                                                                      value))

        self.namespace = self.source.namespace
        self.codeobj_class = self.source.codeobj_class

        self._enable_group_attributes()
開發者ID:msGenDev,項目名稱:brian2,代碼行數:53,代碼來源:subgroup.py

示例3: __init__

    def __init__(self, N, rates, dt=None, clock=None, when='thresholds',
                 order=0, name='poissongroup*', codeobj_class=None):

        Group.__init__(self, dt=dt, clock=clock, when=when, order=order,
                       name=name)

        self.codeobj_class = codeobj_class

        self._N = N = int(N)

        # TODO: In principle, it would be nice to support Poisson groups with
        # refactoriness, but we can't currently, since the refractoriness
        # information is reset in the state updater which we are not using
        # We could either use a specific template or simply not bother and make
        # users write their own NeuronGroup (with threshold rand() < rates*dt)
        # for more complex use cases.

        self.variables = Variables(self)
        # standard variables
        self.variables.add_constant('N', unit=Unit(1), value=self._N)
        self.variables.add_arange('i', self._N, constant=True, read_only=True)
        self.variables.add_array('_spikespace', size=N+1, unit=Unit(1),
                                 dtype=np.int32)
        self.variables.create_clock_variables(self._clock)

        # The firing rates
        self.variables.add_array('rates', size=N, unit=Hz)

        self.start = 0
        self.stop = N

        self._refractory = False

        # To avoid a warning about the local variable rates, we set the real
        # threshold condition only after creating the object
        self.events = {'spike': 'False'}
        self.thresholder = {'spike': Thresholder(self)}
        self.events = {'spike': 'rand() < rates * dt'}
        self.contained_objects.append(self.thresholder['spike'])

        self._enable_group_attributes()

        # Here we want to use the local namespace, but at the level where the
        # constructor was called
        self.rates.set_item(slice(None), rates, level=2)
開發者ID:appusom,項目名稱:brian2,代碼行數:45,代碼來源:poissongroup.py

示例4: __init__

    def __init__(self, source, start, end, name=None):
        self.source = weakref.proxy(source)
        if name is None:
            name = source.name + '_subgroup*'
        # We want to update the spikes attribute after it has been updated
        # by the parent, we do this in slot 'thresholds' with an order
        # one higher than the parent order to ensure it takes place after the
        # parent threshold operation
        schedule = Scheduler(clock=source.clock, when='thresholds',
                             order=source.order+1)
        BrianObject.__init__(self, when=schedule, name=name)
        self.N = end-start
        self.start = start
        self.end = end
        self.offset = start

        self.variables = self.source.variables
        self.variable_indices = self.source.variable_indices
        self.namespace = self.source.namespace
        self.codeobj_class = self.source.codeobj_class

        Group.__init__(self)
開發者ID:yayyme,項目名稱:brian2,代碼行數:22,代碼來源:subgroup.py

示例5: __init__

    def __init__(self, source, variables, record=None, when=None, name=None):
        self.source = weakref.proxy(source)

        # run by default on source clock at the end
        scheduler = Scheduler(when)
        if not scheduler.defined_clock:
            scheduler.clock = source.clock
        if not scheduler.defined_when:
            scheduler.when = 'end'
        BrianObject.__init__(self, when=scheduler, name=name)
        
        # variables should always be a list of strings
        if variables is True:
            variables = source.units.keys()
        elif isinstance(variables, str):
            variables = [variables]
        self.variables = variables
        
        # record should always be an array of ints
        if record is None or record is False:
            record = array([], dtype=int)
        elif record is True:
            record = arange(len(source))
        else:
            record = array(record, dtype=int)
            
        #: The array of recorded indices
        self.indices = record
        
        # create data structures
        self.reinit()
        
        # initialise Group access
        self.units = dict((var, source.units[var]) for var in variables)
        self.arrays = {}
        Group.__init__(self)
開發者ID:vipuldivyanshu92,項目名稱:brian2,代碼行數:36,代碼來源:statemonitor.py

示例6: spatialneuron_attribute

 def spatialneuron_attribute(neuron, x):
     '''
     Selects a subtree from `SpatialNeuron` neuron and returns a `SpatialSubgroup`.
     If it does not exist, returns the `Group` attribute.
     '''
     if x == 'main':  # Main segment, without the subtrees
         origin = neuron.morphology._origin
         return Subgroup(neuron, origin, origin + len(neuron.morphology.x))
     elif (x != 'morphology') and ((x in neuron.morphology._namedkid) or
                                   all([c in 'LR123456789' for c in x])):  # subtree
         morpho = neuron.morphology[x]
         return SpatialSubgroup(neuron, morpho._origin,
                                morpho._origin + len(morpho),
                                morphology=morpho)
     else:
         return Group.__getattr__(neuron, x)
開發者ID:Kwartke,項目名稱:brian2,代碼行數:16,代碼來源:spatialneuron.py

示例7: spatialneuron_attribute

 def spatialneuron_attribute(neuron, name):
     '''
     Selects a subtree from `SpatialNeuron` neuron and returns a `SpatialSubgroup`.
     If it does not exist, returns the `Group` attribute.
     '''
     if name == 'main':  # Main section, without the subtrees
         indices = neuron.morphology.indices[:]
         start, stop = indices[0], indices[-1]
         return SpatialSubgroup(neuron, start, stop + 1,
                                morphology=neuron.morphology)
     elif (name != 'morphology') and ((name in getattr(neuron.morphology, 'children', [])) or
                                   all([c in 'LR123456789' for c in name])):  # subtree
         morpho = neuron.morphology[name]
         start = morpho.indices[0]
         stop = SpatialNeuron._find_subtree_end(morpho)
         return SpatialSubgroup(neuron, start, stop + 1, morphology=morpho)
     else:
         return Group.__getattr__(neuron, name)
開發者ID:brian-team,項目名稱:brian2,代碼行數:18,代碼來源:spatialneuron.py

示例8: __getattr__

 def __getattr__(self, item):
     # We do this because __setattr__ and __getattr__ are not active until
     # _group_attribute_access_active attribute is set, and if it is set,
     # then __getattr__ will not be called. Therefore, if getattr is called
     # with this name, it is because it hasn't been set yet and so this
     # method should raise an AttributeError to agree that it hasn't been
     # called yet.
     if item == '_group_attribute_access_active':
         raise AttributeError
     if not hasattr(self, '_group_attribute_access_active'):
         raise AttributeError
     if item in self.record_variables:
         unit = self.variables[item].unit
         return Quantity(self.variables['_recorded_'+item].get_value().T,
                         dim=unit.dim, copy=True)
     elif item.endswith('_') and item[:-1] in self.record_variables:
         return self.variables['_recorded_'+item[:-1]].get_value().T
     else:
         return Group.__getattr__(self, item)
開發者ID:Kwartke,項目名稱:brian2,代碼行數:19,代碼來源:statemonitor.py

示例9: __init__

    def __init__(self, N, indices, times, dt=None, clock=None,
                 period=1e100*second, when='thresholds', order=0, sorted=False,
                 name='spikegeneratorgroup*', codeobj_class=None):

        Group.__init__(self, dt=dt, clock=clock, when=when, order=order, name=name)

        # Let other objects know that we emit spikes events
        self.events = {'spike': None}

        self.codeobj_class = codeobj_class

        if N < 1 or int(N) != N:
            raise ValueError('N has to be an integer >=1.')

        if len(indices) != len(times):
            raise ValueError(('Length of the indices and times array must '
                              'match, but %d != %d') % (len(indices),
                                                        len(times)))

        if period < 0*second:
            raise ValueError('The period cannot be negative.')
        elif len(times) and period <= np.max(times):
            raise ValueError('The period has to be greater than the maximum of '
                             'the spike times')

        self.start = 0
        self.stop = N

        if not sorted:
            # sort times and indices first by time, then by indices
            rec = np.rec.fromarrays([times, indices], names=['t', 'i'])
            rec.sort()
            times = np.ascontiguousarray(rec.t)
            indices = np.ascontiguousarray(rec.i)

        self.variables = Variables(self)

        # We store the indices and times also directly in the Python object,
        # this way we can use them for checks in `before_run` even in standalone
        # TODO: Remove this when the checks in `before_run` have been moved to the template
        self._spike_time = times
        self._neuron_index = indices

        # standard variables
        self.variables.add_constant('N', unit=Unit(1), value=N)
        self.variables.add_array('period', unit=second, size=1,
                                 constant=True, read_only=True, scalar=True)
        self.variables.add_arange('i', N)
        self.variables.add_dynamic_array('spike_number',
                                         values=np.arange(len(indices)),
                                         size=len(indices), unit=Unit(1),
                                         dtype=np.int32, read_only=True,
                                         constant=True,
                                         constant_size=True,
                                         unique=True)
        self.variables.add_dynamic_array('neuron_index', values=indices,
                                         size=len(indices), unit=Unit(1),
                                         dtype=np.int32, index='spike_number',
                                         read_only=True, constant=True,
                                         constant_size=True)
        self.variables.add_dynamic_array('spike_time', values=times, size=len(times),
                                         unit=second, index='spike_number',
                                         read_only=True, constant=True,
                                         constant_size=True)
        self.variables.add_array('_spikespace', size=N+1, unit=Unit(1),
                                 dtype=np.int32)
        self.variables.add_array('_lastindex', size=1, values=0, unit=Unit(1),
                                 dtype=np.int32, read_only=True, scalar=True)
        self.variables.create_clock_variables(self._clock)

        #: Remember the dt we used the last time when we checked the spike bins
        #: to not repeat the work for multiple runs with the same dt
        self._previous_dt = None

        #: "Dirty flag" that will be set when spikes are changed after the
        #: `before_run` check
        self._spikes_changed = True

        CodeRunner.__init__(self, self,
                            code='',
                            template='spikegenerator',
                            clock=self._clock,
                            when=when,
                            order=order,
                            name=None)

        # Activate name attribute access
        self._enable_group_attributes()

        self.variables['period'].set_value(period)
開發者ID:moritzaugustin,項目名稱:brian2,代碼行數:90,代碼來源:spikegeneratorgroup.py

示例10: __init__

    def __init__(self, source, target=None, model=None, pre=None, post=None,
                 connect=False, delay=None, namespace=None, dtype=None,
                 codeobj_class=None,
                 clock=None, method=None, name='synapses*'):
        self._N = 0
        Group.__init__(self, when=clock, name=name)
        
        self.codeobj_class = codeobj_class

        self.source = weakref.proxy(source)
        if target is None:
            self.target = self.source
        else:
            self.target = weakref.proxy(target)
            
        ##### Prepare and validate equations
        if model is None:
            model = ''

        if isinstance(model, basestring):
            model = Equations(model)
        if not isinstance(model, Equations):
            raise TypeError(('model has to be a string or an Equations '
                             'object, is "%s" instead.') % type(model))

        # Check flags
        model.check_flags({DIFFERENTIAL_EQUATION: ['event-driven'],
                           STATIC_EQUATION: ['summed'],
                           PARAMETER: ['constant']})

        # Separate the equations into event-driven and continuously updated
        # equations
        event_driven = []
        continuous = []
        for single_equation in model.itervalues():
            if 'event-driven' in single_equation.flags:
                event_driven.append(single_equation)
            else:
                continuous.append(single_equation)
        # Add the lastupdate variable, used by event-driven equations
        continuous.append(SingleEquation(PARAMETER, 'lastupdate', second))

        if len(event_driven):
            self.event_driven = Equations(event_driven)
        else:
            self.event_driven = None

        self.equations = Equations(continuous)

        # Setup the namespace
        self._given_namespace = namespace
        self.namespace = create_namespace(namespace)

        self._queues = {}
        self._delays = {}

        # Setup variables
        self._create_variables()

        #: Set of `Variable` objects that should be resized when the
        #: number of synapses changes
        self._registered_variables = set()

        for varname, var in self.variables.iteritems():
            if isinstance(var, DynamicArrayVariable):
                # Register the array with the `SynapticItemMapping` object so
                # it gets automatically resized
                self.register_variable(var)

        #: List of names of all updaters, e.g. ['pre', 'post']
        self._synaptic_updaters = []
        #: List of all `SynapticPathway` objects
        self._pathways = []
        for prepost, argument in zip(('pre', 'post'), (pre, post)):
            if not argument:
                continue
            if isinstance(argument, basestring):
                self._add_updater(argument, prepost)
            elif isinstance(argument, collections.Mapping):
                for key, value in argument.iteritems():
                    if not isinstance(key, basestring):
                        err_msg = ('Keys for the "{}" argument'
                                   'have to be strings, got '
                                   '{} instead.').format(prepost, type(key))
                        raise TypeError(err_msg)
                    self._add_updater(value, prepost, objname=key)

        # If we have a pathway called "pre" (the most common use case), provide
        # direct access to its delay via a delay attribute (instead of having
        # to use pre.delay)
        if 'pre' in self._synaptic_updaters:
            self.variables.add_reference('delay', self.pre.variables['delay'])

        if delay is not None:
            if isinstance(delay, Quantity):
                if not 'pre' in self._synaptic_updaters:
                    raise ValueError(('Cannot set delay, no "pre" pathway exists.'
                                      'Use a dictionary if you want to set the '
                                      'delay for a pathway with a different name.'))
                delay = {'pre': delay}
#.........這裏部分代碼省略.........
開發者ID:yger,項目名稱:brian2,代碼行數:101,代碼來源:synapses.py

示例11: __init__

    def __init__(self, N, indices, times, dt=None, clock=None,
                 period=0*second, when='thresholds', order=0, sorted=False,
                 name='spikegeneratorgroup*', codeobj_class=None):

        Group.__init__(self, dt=dt, clock=clock, when=when, order=order, name=name)

        # We store the indices and times also directly in the Python object,
        # this way we can use them for checks in `before_run` even in standalone
        # TODO: Remove this when the checks in `before_run` have been moved to the template
        #: Array of spiking neuron indices.
        self._neuron_index = None
        #: Array of spiking neuron times.
        self._spike_time = None
        #: "Dirty flag" that will be set when spikes are changed after the
        #: `before_run` check
        self._spikes_changed = True

        # Let other objects know that we emit spikes events
        self.events = {'spike': None}

        self.codeobj_class = codeobj_class

        if N < 1 or int(N) != N:
            raise TypeError('N has to be an integer >=1.')
        N = int(N)  # Make sure that it is an integer, values such as 10.0 would
                    # otherwise make weave compilation fail
        self.start = 0
        self.stop = N

        self.variables = Variables(self)
        self.variables.create_clock_variables(self._clock)

        indices, times = self._check_args(indices, times, period, N, sorted,
                                          self._clock.dt)

        self.variables.add_constant('N', value=N)
        self.variables.add_array('period', dimensions=second.dim, size=1,
                                 constant=True, read_only=True, scalar=True,
                                 dtype=self._clock.variables['t'].dtype)
        self.variables.add_arange('i', N)
        self.variables.add_dynamic_array('spike_number',
                                         values=np.arange(len(indices)),
                                         size=len(indices),
                                         dtype=np.int32, read_only=True,
                                         constant=True, index='spike_number',
                                         unique=True)
        self.variables.add_dynamic_array('neuron_index', values=indices,
                                         size=len(indices),
                                         dtype=np.int32, index='spike_number',
                                         read_only=True, constant=True)
        self.variables.add_dynamic_array('spike_time', values=times, size=len(times),
                                         dimensions=second.dim, index='spike_number',
                                         read_only=True, constant=True,
                                         dtype=self._clock.variables['t'].dtype)
        self.variables.add_dynamic_array('_timebins', size=len(times),
                                         index='spike_number',
                                         read_only=True, constant=True,
                                         dtype=np.int32)
        self.variables.add_array('_period_bins', size=1, constant=True,
                                 read_only=True, scalar=True,
                                 dtype=np.int32)
        self.variables.add_array('_spikespace', size=N+1, dtype=np.int32)
        self.variables.add_array('_lastindex', size=1, values=0, dtype=np.int32,
                                 read_only=True, scalar=True)

        #: Remember the dt we used the last time when we checked the spike bins
        #: to not repeat the work for multiple runs with the same dt
        self._previous_dt = None

        CodeRunner.__init__(self, self,
                            code='',
                            template='spikegenerator',
                            clock=self._clock,
                            when=when,
                            order=order,
                            name=None)

        # Activate name attribute access
        self._enable_group_attributes()

        self.variables['period'].set_value(period)
開發者ID:brian-team,項目名稱:brian2,代碼行數:81,代碼來源:spikegeneratorgroup.py

示例12: test_default_content

def test_default_content():
    '''
    Test that the default namespace contains standard units and functions.
    '''
    group = Group()
    # Units
    assert group._resolve('second', {}).get_value_with_unit() == second
    assert group._resolve('volt', {}).get_value_with_unit() == volt
    assert group._resolve('ms', {}).get_value_with_unit() == ms
    assert group._resolve('Hz', {}).get_value_with_unit() == Hz
    assert group._resolve('mV', {}).get_value_with_unit() == mV

    # Functions
    assert group._resolve('sin', {}).pyfunc == sin
    assert group._resolve('log', {}).pyfunc == log
    assert group._resolve('exp', {}).pyfunc == exp

    # Constants
    assert group._resolve('e', {}).sympy_obj == sympy.E
    assert group._resolve('e', {}).get_value() == numpy.e
    assert group._resolve('pi', {}).sympy_obj == sympy.pi
    assert group._resolve('pi', {}).get_value() == numpy.pi
    assert group._resolve('inf', {}).sympy_obj == sympy.oo
    assert group._resolve('inf', {}).get_value() == numpy.inf
開發者ID:dokato,項目名稱:brian2,代碼行數:24,代碼來源:test_namespaces.py

示例13: __init__

 def __init__(self, variables, namespace=None):
     self.variables = variables
     self.namespace = namespace
     # We use a unique name to get repeated warnings
     Group.__init__(self, name='simplegroup_' +
                               str(uuid.uuid4()).replace('-','_'))
開發者ID:dokato,項目名稱:brian2,代碼行數:6,代碼來源:test_namespaces.py

示例14: __init__

    def __init__(self, N, equations, method=euler,
                 threshold=None,
                 reset=None,
                 dtype=None, language=None,
                 clock=None, name=None,
                 level=0):
        BrianObject.__init__(self, when=clock, name=name)
        ##### VALIDATE ARGUMENTS AND STORE ATTRIBUTES
        self.method = method
        self.level = level = int(level)
        try:
            self.N = N = int(N)
        except ValueError:
            if isinstance(N, str):
                raise TypeError("First NeuronGroup argument should be size, not equations.")
            raise
        if N<1:
            raise ValueError("NeuronGroup size should be at least 1, was "+str(N))
        # Validate equations
        if isinstance(equations, basestring):
            equations = Equations(equations, level=level+1)
        if not isinstance(equations, Equations):
            raise ValueError(('equations has to be a string or an Equations '
                              'object, is "%s" instead.') % type(equations))
        # add refractoriness
        equations = add_refractoriness(equations)
        self.equations = equations
        
        logger.debug("Creating NeuronGroup of size {self.N}, "
                     "equations {self.equations}.".format(self=self))
        
        # Check flags
        equations.check_flags({DIFFERENTIAL_EQUATION: ('active'),
                               PARAMETER: ('constant')})
        
        # Set dtypes and units
        self.prepare_dtypes(dtype=dtype)
        self.units = dict((var, equations.units[var]) for var in equations.equations.keys())
        
        # Allocate memory (TODO: this should be refactored somewhere at some point)
        self.allocate_memory()

        #: The array of spikes from the most recent threshold operation
        self.spikes = array([], dtype=int)

        # Set these for documentation purposes
        #: Performs numerical integration step
        self.state_updater = None
        #: Performs thresholding step, sets the value of `spikes`
        self.thresholder = None
        #: Resets neurons which have spiked (`spikes`)
        self.resetter = None
        
        # Code generation (TODO: this should be refactored and modularised)
        # Temporary, set default language to Python
        if language is None:
            language = PythonLanguage()
        self.language = language
        self.create_state_updater()
        self.create_thresholder(threshold, level=level+1)
        self.create_resetter(reset, level=level+1)
        
        # Creation of contained_objects that do the work
        self.contained_objects.append(self.state_updater)
        if self.thresholder is not None:
            self.contained_objects.append(self.thresholder)
        if self.resetter is not None:
            self.contained_objects.append(self.resetter)
        
        # Activate name attribute access
        Group.__init__(self)
開發者ID:vipuldivyanshu92,項目名稱:brian2,代碼行數:71,代碼來源:neurongroup.py


注:本文中的brian2.groups.group.Group類示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。