當前位置: 首頁>>代碼示例>>Python>>正文


Python model.Model類代碼示例

本文整理匯總了Python中blocks.model.Model的典型用法代碼示例。如果您正苦於以下問題:Python Model類的具體用法?Python Model怎麽用?Python Model使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。


在下文中一共展示了Model類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_model_handles_brickless_parameteres

def test_model_handles_brickless_parameteres():
    x = tensor.matrix('x')
    v = shared_floatx(numpy.zeros((10, 10)), name='V')
    add_role(v, PARAMETER)
    y = x.dot(v)
    model = Model(y)
    assert list(model.get_parameter_dict().items()) == [('V', v)]
開發者ID:Beronx86,項目名稱:blocks,代碼行數:7,代碼來源:test_model.py

示例2: evaluate

def evaluate(model, load_path):
    with open(load_path + '/trained_params_best.npz') as f:
        loaded = np.load(f)
        blocks_model = Model(model.cost)
        params_dicts = blocks_model.get_parameter_dict()
        params_names = params_dicts.keys()
        for param_name in params_names:
                    param = params_dicts[param_name]
                    # '/f_6_.W' --> 'f_6_.W'
                    slash_index = param_name.find('/')
                    param_name = param_name[slash_index + 1:]
                    assert param.get_value().shape == loaded[param_name].shape
                    param.set_value(loaded[param_name])

    train_data_stream, valid_data_stream = get_cmv_v2_streams(100)
    # T x B x F
    data = train_data_stream.get_epoch_iterator().next()
    cg = ComputationGraph(model.cost)
    f = theano.function(cg.inputs, [model.location, model.scale],
                        on_unused_input='ignore',
                        allow_input_downcast=True)
    res = f(data[1], data[0])
    for i in range(10):
        visualize_attention(data[0][:, i, :],
                            res[0][:, i, :], res[1][:, i, :], prefix=str(i))
開發者ID:BinbinBian,項目名稱:LSTM-Attention,代碼行數:25,代碼來源:main.py

示例3: test_sampling

def test_sampling():

    # Create Theano variables
    sampling_input = theano.tensor.lmatrix("input")

    # Construct model
    encoder = BidirectionalEncoder(vocab_size=10, embedding_dim=5, state_dim=8)
    decoder = Decoder(vocab_size=12, embedding_dim=6, state_dim=8, representation_dim=16, theano_seed=1234)
    sampling_representation = encoder.apply(sampling_input, theano.tensor.ones(sampling_input.shape))
    generateds = decoder.generate(sampling_input, sampling_representation)
    model = Model(generateds[1])

    # Initialize model
    encoder.weights_init = decoder.weights_init = IsotropicGaussian(0.01)
    encoder.biases_init = decoder.biases_init = Constant(0)
    encoder.push_initialization_config()
    decoder.push_initialization_config()
    encoder.bidir.prototype.weights_init = Orthogonal()
    decoder.transition.weights_init = Orthogonal()
    encoder.initialize()
    decoder.initialize()

    # Compile a function for the generated
    sampling_fn = model.get_theano_function()

    # Create literal variables
    numpy.random.seed(1234)
    x = numpy.random.randint(0, 10, size=(1, 2))

    # Call function and check result
    generated_step = sampling_fn(x)
    assert len(generated_step[0].flatten()) == 4
開發者ID:guxiaodong1987,項目名稱:blocks-examples,代碼行數:32,代碼來源:test_machine_translation.py

示例4: create_act_table

    def create_act_table(self, save_to, act_table):
        batch_size = 500
        image_size = (28, 28)
        output_size = 10
        convnet = create_lenet_5()
        layers = convnet.layers

        x = tensor.tensor4('features')
        y = tensor.lmatrix('targets')

        # Normalize input and apply the convnet
        probs = convnet.apply(x)
        cg = ComputationGraph([probs])

        def full_brick_name(brick):
            return '/'.join([''] + [b.name for b in brick.get_unique_path()])

        # Find layer outputs to probe
        outmap = OrderedDict((full_brick_name(get_brick(out)), out)
                for out in VariableFilter(
                    roles=[OUTPUT], bricks=[Convolutional, Linear])(
                        cg.variables))
        # Generate pics for biases
        biases = VariableFilter(roles=[BIAS])(cg.parameters)

        # Generate parallel array, in the same order, for outputs
        outs = [outmap[full_brick_name(get_brick(b))] for b in biases]

        # Figure work count
        error_rate = (MisclassificationRate().apply(y.flatten(), probs)
                      .copy(name='error_rate'))
        max_activation_table = (MaxActivationTable().apply(
                outs).copy(name='max_activation_table'))
        max_activation_table.tag.aggregation_scheme = (
                Concatenate(max_activation_table))

        model = Model([
            error_rate,
            max_activation_table])

        # Load it with trained parameters
        params = load_parameters(open(save_to, 'rb'))
        model.set_parameter_values(params)

        mnist_test_stream = DataStream.default_stream(
            self.mnist_test,
            iteration_scheme=SequentialScheme(
                self.mnist_test.num_examples, batch_size))

        evaluator = DatasetEvaluator([
            error_rate,
            max_activation_table
            ])
        results = evaluator.evaluate(mnist_test_stream)
        table = results['max_activation_table']
        pickle.dump(table, open(act_table, 'wb'))
        return table
開發者ID:davidbau,項目名稱:net-intent,代碼行數:57,代碼來源:bucket.py

示例5: evaluate

def evaluate(model, load_path):
    with open(load_path + '/trained_params_best.npz') as f:
        loaded = np.load(f)
        blocks_model = Model(model)
        params_dicts = blocks_model.get_parameter_dict()
        params_names = params_dicts.keys()
        for param_name in params_names:
            param = params_dicts[param_name]
            assert param.get_value().shape == loaded[param_name].shape
            param.set_value(loaded[param_name])
開發者ID:mohammadpz,項目名稱:LSTM-Attention,代碼行數:10,代碼來源:main.py

示例6: main

def main():

    import configurations
    from stream import DStream
    logger = logging.getLogger(__name__)
    cfig = getattr(configurations, 'get_config_penn')()

    rnnlm = Rnnlm(cfig['vocabsize'], cfig['nemb'], cfig['nhids'])
    rnnlm.weights_init = IsotropicGaussian(0.1)
    rnnlm.biases_init = Constant(0.)
    rnnlm.push_initialization_config()
    rnnlm.generator.transition.weights_init = Orthogonal()

    sentence = tensor.lmatrix('sentence')
    sentence_mask = tensor.matrix('sentence_mask')
    batch_cost = rnnlm.cost(sentence, sentence_mask).sum()
    batch_size = sentence.shape[1].copy(name='batch_size')
    cost = aggregation.mean(batch_cost, batch_size)
    cost.name = "sequence_log_likelihood"
    logger.info("Cost graph is built")

    model = Model(cost)
    parameters = model.get_parameter_dict()
    logger.info("Parameters:\n" +
                pprint.pformat(
                    [(key, value.get_value().shape) for key, value
                        in parameters.items()],
                    width=120))

    for brick in model.get_top_bricks():
        brick.initialize()
    cg = ComputationGraph(cost)
    algorithm = GradientDescent(
        cost=cost, parameters=cg.parameters,
        step_rule=CompositeRule([StepClipping(10.0), Scale(0.01)]))

    gradient_norm = aggregation.mean(algorithm.total_gradient_norm)
    step_norm = aggregation.mean(algorithm.total_step_norm)
    monitored_vars = [cost, gradient_norm, step_norm]

    train_monitor = TrainingDataMonitoring(variables=monitored_vars, after_batch=True,
                                           before_first_epoch=True, prefix='tra')

    extensions = [train_monitor, Timing(), Printing(after_batch=True),
                  FinishAfter(after_n_epochs=1000),
                  Printing(every_n_batches=1)]

    train_stream = DStream(datatype='train', config=cfig)
    main_loop = MainLoop(model=model,
                         data_stream=train_stream,
                         algorithm=algorithm,
                         extensions=extensions)

    main_loop.run()
開發者ID:mingxuan,項目名稱:RNNLM,代碼行數:54,代碼來源:model.py

示例7: fine_tuning

def fine_tuning(cost, args):
    param_values = load_parameter_values(args.fine_tuning)

    param_values[
        "/output_layer.W"] = np.concatenate((
            param_values["/output_layer.W"],
            0.1 * np.random.randn(args.state_dim, 40).astype(np.float32)))

    model = Model(cost)
    model.set_parameter_values(param_values)

    return cost
開發者ID:ClemDoum,項目名稱:RNN_Experiments,代碼行數:12,代碼來源:fine_tuning.py

示例8: testing

    def testing(self, fea2obj):
        config = self._config
        dsdir = config['dsdir']
        devfile = dsdir + '/dev.txt'
        testfile = dsdir + '/test.txt'
        networkfile = config['net']
        batch_size = 10000#int(config['batchsize'])
        devMentions = load_ent_ds(devfile)
        tstMentions = load_ent_ds(testfile)
        logger.info('#dev: %d #test: %d', len(devMentions), len(tstMentions))

        main_loop = load(networkfile + '.best.pkl')
        logger.info('Model loaded. Building prediction function...')
        old_model = main_loop.model
        logger.info(old_model.inputs)
        sources = [inp.name for inp in old_model.inputs]
#         fea2obj = build_input_objs(sources, config)
        t2idx = fea2obj['targets'].t2idx
        deterministic = str_to_bool(config['use_mean_pred']) if 'use_mean_pred' in config else True
        kl_weight = shared_floatx(0.001, 'kl_weight')
        entropy_weight= shared_floatx(0.001, 'entropy_weight')


        cost, _, y_hat, _, _,_,_ = build_model_new(fea2obj, len(t2idx), self._config, kl_weight, entropy_weight, deterministic=deterministic, test=True)
        model = Model(cost)
        model.set_parameter_values(old_model.get_parameter_values())

        theinputs = []
        for fe in fea2obj.keys():
            if 'targets' in fe:
                continue
            for inp in model.inputs:
                if inp.name == fe:
                    theinputs.append(inp)

#         theinputs = [inp for inp in model.inputs if inp.name != 'targets']
        print "theinputs: ", theinputs
        predict = theano.function(theinputs, y_hat)

        test_stream, num_samples_test = get_comb_stream(fea2obj, 'test', batch_size, shuffle=False)
        dev_stream, num_samples_dev = get_comb_stream(fea2obj, 'dev', batch_size, shuffle=False)
        logger.info('sources: %s -- number of test/dev samples: %d/%d', test_stream.sources, num_samples_test, num_samples_dev)
        idx2type = {idx:t for t,idx in t2idx.iteritems()}

        logger.info('Starting to apply on dev inputs...')
        self.applypredict(theinputs, predict, dev_stream, devMentions, num_samples_dev, batch_size, os.path.join(config['exp_dir'], config['matrixdev']), idx2type)
        logger.info('...apply on dev data finished')

        logger.info('Starting to apply on test inputs...')
        self.applypredict(theinputs, predict, test_stream, tstMentions, num_samples_test, batch_size, os.path.join(config['exp_dir'], config['matrixtest']), idx2type)
        logger.info('...apply on test data finished')
開發者ID:yyaghoobzadeh,項目名稱:figment_v2,代碼行數:51,代碼來源:train_test.py

示例9: __init__

    def __init__(self, model_name, model, stream, **kwargs):
        super(RunOnTest, self).__init__(**kwargs)

        self.model_name = model_name

        cg = Model(model.predict(**stream.inputs()))

        self.inputs = cg.inputs
        self.outputs = model.predict.outputs

        req_vars_test = model.predict.inputs + ['trip_id']
        self.test_stream = stream.test(req_vars_test)

        self.function = cg.get_theano_function()
開發者ID:JimStearns206,項目名稱:taxi,代碼行數:14,代碼來源:ext_test.py

示例10: evaluate

def evaluate(model, load_path, configs):
    with open(load_path + "trained_params_best.npz") as f:
        loaded = np.load(f)
        blocks_model = Model(model.cost)
        params_dicts = blocks_model.get_parameter_dict()
        params_names = params_dicts.keys()
        for param_name in params_names:
            param = params_dicts[param_name]
            # '/f_6_.W' --> 'f_6_.W'
            slash_index = param_name.find("/")
            param_name = param_name[slash_index + 1 :]
            assert param.get_value().shape == loaded[param_name].shape
            param.set_value(loaded[param_name])

        inps = ComputationGraph(model.error_rate).inputs
        eval_function = theano.function(inps, [model.error_rate, model.probabilities])
        _, vds = configs["get_streams"](100)
        data = vds.get_epoch_iterator().next()
        print "Valid_ER: " + str(eval_function(data[0], data[2], data[1])[0])
        return eval_function
開發者ID:negar-rostamzadeh,項目名稱:rna,代碼行數:20,代碼來源:cooking.py

示例11: train_model

def train_model(cost, train_stream, valid_stream, valid_freq, valid_rare,
                load_location=None, save_location=None):
    cost.name = 'nll'
    perplexity = 2 ** (cost / tensor.log(2))
    perplexity.name = 'ppl'

    # Define the model
    model = Model(cost)

    # Load the parameters from a dumped model
    if load_location is not None:
        logger.info('Loading parameters...')
        model.set_param_values(load_parameter_values(load_location))

    cg = ComputationGraph(cost)
    algorithm = GradientDescent(cost=cost, step_rule=Scale(learning_rate=0.01),
                                params=cg.parameters)
    main_loop = MainLoop(
        model=model,
        data_stream=train_stream,
        algorithm=algorithm,
        extensions=[
            DataStreamMonitoring([cost, perplexity], valid_stream,
                                 prefix='valid_all', every_n_batches=5000),
            # Overfitting of rare words occurs between 3000 and 4000 iterations
            DataStreamMonitoring([cost, perplexity], valid_rare,
                                 prefix='valid_rare', every_n_batches=500),
            DataStreamMonitoring([cost, perplexity], valid_freq,
                                 prefix='valid_frequent',
                                 every_n_batches=5000),
            Printing(every_n_batches=500)
        ]
    )
    main_loop.run()

    # Save the main loop
    if save_location is not None:
        logger.info('Saving the main loop...')
        dump_manager = MainLoopDumpManager(save_location)
        dump_manager.dump(main_loop)
        logger.info('Saved')
開發者ID:bartvm,項目名稱:variational_nlp,代碼行數:41,代碼來源:feedforward.py

示例12: train_model

def train_model(cost, error_rate, train_stream,
                load_location=None, save_location=None):

    cost.name = "Cross_entropy"
    error_rate.name = 'Error_rate'

    # Define the model
    model = Model(cost)

    # Load the parameters from a dumped model
    if load_location is not None:
        logger.info('Loading parameters...')
        model.set_param_values(load_parameter_values(load_location))

    cg = ComputationGraph(cost)
    step_rule = Momentum(learning_rate=0.1, momentum=0.9)
    algorithm = GradientDescent(cost=cost, step_rule=step_rule,
                                params=cg.parameters)
    main_loop = MainLoop(
        model=model,
        data_stream=train_stream,
        algorithm=algorithm,
        extensions=[
            # DataStreamMonitoring([cost], test_stream, prefix='test',
            #                      after_epoch=False, every_n_epochs=10),
            DataStreamMonitoring([cost], train_stream, prefix='train',
                                 after_epoch=True),
            Printing(after_epoch=True)
        ]
    )
    main_loop.run()

    # Save the main loop
    if save_location is not None:
        logger.info('Saving the main loop...')
        dump_manager = MainLoopDumpManager(save_location)
        dump_manager.dump(main_loop)
        logger.info('Saved')
開發者ID:Alexis211,項目名稱:transpose_features,代碼行數:38,代碼來源:features_reduction.py

示例13: test_model

def test_model():
    x = tensor.matrix('x')
    mlp1 = MLP([Tanh(), Tanh()], [10, 20, 30], name="mlp1")
    mlp2 = MLP([Tanh()], [30, 40], name="mlp2")
    h1 = mlp1.apply(x)
    h2 = mlp2.apply(h1)

    model = Model(h2)
    assert model.get_top_bricks() == [mlp1, mlp2]
    # The order of parameters returned is deterministic but
    # not sensible.
    assert list(model.get_parameter_dict().items()) == [
        ('/mlp2/linear_0.b', mlp2.linear_transformations[0].b),
        ('/mlp1/linear_1.b', mlp1.linear_transformations[1].b),
        ('/mlp1/linear_0.b', mlp1.linear_transformations[0].b),
        ('/mlp1/linear_0.W', mlp1.linear_transformations[0].W),
        ('/mlp1/linear_1.W', mlp1.linear_transformations[1].W),
        ('/mlp2/linear_0.W', mlp2.linear_transformations[0].W)]

    # Test getting and setting parameter values
    mlp3 = MLP([Tanh()], [10, 10])
    mlp3.allocate()
    model3 = Model(mlp3.apply(x))
    parameter_values = {
        '/mlp/linear_0.W': 2 * numpy.ones((10, 10),
                                          dtype=theano.config.floatX),
        '/mlp/linear_0.b': 3 * numpy.ones(10, dtype=theano.config.floatX)}
    model3.set_parameter_values(parameter_values)
    assert numpy.all(
        mlp3.linear_transformations[0].parameters[0].get_value() == 2)
    assert numpy.all(
        mlp3.linear_transformations[0].parameters[1].get_value() == 3)
    got_parameter_values = model3.get_parameter_values()
    assert len(got_parameter_values) == len(parameter_values)
    for name, value in parameter_values.items():
        assert_allclose(value, got_parameter_values[name])

    # Test exception is raised if parameter shapes don't match
    def helper():
        parameter_values = {
            '/mlp/linear_0.W': 2 * numpy.ones((11, 11),
                                              dtype=theano.config.floatX),
            '/mlp/linear_0.b': 3 * numpy.ones(11, dtype=theano.config.floatX)}
        model3.set_parameter_values(parameter_values)
    assert_raises(ValueError, helper)

    # Test name conflict handling
    mlp4 = MLP([Tanh()], [10, 10])

    def helper():
        Model(mlp4.apply(mlp3.apply(x)))
    assert_raises(ValueError, helper)
開發者ID:Beronx86,項目名稱:blocks,代碼行數:52,代碼來源:test_model.py

示例14: evaluate

def evaluate(ladder, load_path):
    with open(load_path + '/trained_params_best.npz') as f:
        loaded = np.load(f)
        model = Model(ladder.costs.total)
        params_dicts = model.get_parameter_dict()
        params_names = params_dicts.keys()
        for param_name in params_names:
            param = params_dicts[param_name]
            # '/f_6_.W' --> 'f_6_.W'
            slash_index = param_name.find('/')
            param_name = param_name[slash_index + 1:]
            assert param.get_value().shape == loaded[param_name].shape
            param.set_value(loaded[param_name])

    test_data_stream, test_data_stream = get_mixed_streams(10000)
    test_data = test_data_stream.get_epoch_iterator().next()
    test_data_input = test_data[10]
    test_data_target = test_data[0]
    print 'Compiling ...'
    cg = ComputationGraph([ladder.costs.total])
    eval_ = theano.function(cg.inputs, ladder.error)
    print 'Test_set_Error: ' + str(eval_(test_data_input, test_data_target))
    import ipdb
    ipdb.set_trace()
開發者ID:mohammadpz,項目名稱:ladder_network,代碼行數:24,代碼來源:main.py

示例15: main


#.........這裏部分代碼省略.........
    cost = (CategoricalCrossEntropy().apply(y.flatten(), probs)
            .copy(name='cost'))
    error_rate = (MisclassificationRate().apply(y.flatten(), probs)
                  .copy(name='error_rate'))

    cg = ComputationGraph([cost, error_rate])
    extra_updates = []

    if batch_norm: # batch norm:
        logger.debug("Apply batch norm")
        pop_updates = get_batch_normalization_updates(cg)
        # p stands for population mean
        # m stands for minibatch
        alpha = 0.005
        extra_updates = [(p, m * alpha + p * (1 - alpha))
                         for p, m in pop_updates]
        population_statistics = [p for p, m in extra_updates]
    if dropout:
        relu_outputs = VariableFilter(bricks=[Rectifier], roles=[OUTPUT])(cg)
        cg = apply_dropout(cg, relu_outputs, dropout)
    cost, error_rate = cg.outputs
    if weight_decay:
        logger.debug("Apply weight decay {}".format(weight_decay))
        cost += weight_decay * l2_norm(cg.parameters)
        cost.name = 'cost'

    # Validation
    valid_probs = convnet.apply_5windows(single_x)
    valid_cost = (CategoricalCrossEntropy().apply(single_y, valid_probs)
            .copy(name='cost'))
    valid_error_rate = (MisclassificationRate().apply(
        single_y, valid_probs).copy(name='error_rate'))

    model = Model([cost, error_rate])
    if load_params:
        logger.info("Loaded params from {}".format(load_params))
        with open(load_params, 'r') as src:
            model.set_parameter_values(load_parameters(src))

    # Training stream with random cropping
    train = DogsVsCats(("train",), subset=slice(None, 25000 - valid_examples, None))
    train_str =  DataStream(
        train, iteration_scheme=ShuffledScheme(train.num_examples, batch_size))
    train_str = add_transformers(train_str, random_crop=True)

    # Validation stream without cropping
    valid = DogsVsCats(("train",), subset=slice(25000 - valid_examples, None, None))
    valid_str = DataStream(
        valid, iteration_scheme=SequentialExampleScheme(valid.num_examples))
    valid_str = add_transformers(valid_str)

    if mode == 'train':
        directory, _ = os.path.split(sys.argv[0])
        env = dict(os.environ)
        env['THEANO_FLAGS'] = 'floatX=float32'
        port = numpy.random.randint(1025, 10000)
        server = subprocess.Popen(
            [directory + '/server.py',
             str(25000 - valid_examples), str(batch_size), str(port)],
            env=env, stderr=subprocess.STDOUT)
        train_str = ServerDataStream(
            ('image_features', 'targets'), produces_examples=False,
            port=port)

        save_to_base, save_to_extension = os.path.splitext(save_to)
開發者ID:rizar,項目名稱:ift6266h16,代碼行數:66,代碼來源:main.py


注:本文中的blocks.model.Model類示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。