當前位置: 首頁>>代碼示例>>Python>>正文


Python parallel.Fork類代碼示例

本文整理匯總了Python中blocks.bricks.parallel.Fork的典型用法代碼示例。如果您正苦於以下問題:Python Fork類的具體用法?Python Fork怎麽用?Python Fork使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。


在下文中一共展示了Fork類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: gru_layer

def gru_layer(dim, h, n):
    fork = Fork(output_names=['linear' + str(n), 'gates' + str(n)],
                name='fork' + str(n), input_dim=dim, output_dims=[dim, dim * 2])
    gru = GatedRecurrent(dim=dim, name='gru' + str(n))
    initialize([fork, gru])
    linear, gates = fork.apply(h)
    return gru.apply(linear, gates)
開發者ID:ixtel,項目名稱:blocks-char-rnn,代碼行數:7,代碼來源:model.py

示例2: __init__

    def __init__(self, dimension, alphabet_size, **kwargs):
        super(WordReverser, self).__init__(**kwargs)
        encoder = Bidirectional(
            SimpleRecurrent(dim=dimension, activation=Tanh()))
        fork = Fork([name for name in encoder.prototype.apply.sequences
                    if name != 'mask'])
        fork.input_dim = dimension
        fork.output_dims = [encoder.prototype.get_dim(name) for name in fork.input_names]
        lookup = LookupTable(alphabet_size, dimension)
        transition = SimpleRecurrent(
            activation=Tanh(),
            dim=dimension, name="transition")
        attention = SequenceContentAttention(
            state_names=transition.apply.states,
            attended_dim=2 * dimension, match_dim=dimension, name="attention")
        readout = Readout(
            readout_dim=alphabet_size,
            source_names=[transition.apply.states[0],
                          attention.take_glimpses.outputs[0]],
            emitter=SoftmaxEmitter(name="emitter"),
            feedback_brick=LookupFeedback(alphabet_size, dimension),
            name="readout")
        generator = SequenceGenerator(
            readout=readout, transition=transition, attention=attention,
            name="generator")

        self.lookup = lookup
        self.fork = fork
        self.encoder = encoder
        self.generator = generator
        self.children = [lookup, fork, encoder, generator]
開發者ID:halidanmu,項目名稱:blocks-examples,代碼行數:31,代碼來源:__init__.py

示例3: example2

def example2():
    """GRU"""
    x = tensor.tensor3('x')
    dim = 3

    fork = Fork(input_dim=dim, output_dims=[dim, dim*2],name='fork',output_names=["linear","gates"], weights_init=initialization.Identity(),biases_init=Constant(0))
    gru = GatedRecurrent(dim=dim, weights_init=initialization.Identity(),biases_init=Constant(0))

    fork.initialize()
    gru.initialize()

    linear, gate_inputs = fork.apply(x)
    h = gru.apply(linear, gate_inputs)

    f = theano.function([x], h)
    print(f(np.ones((dim, 1, dim), dtype=theano.config.floatX))) 

    doubler = Linear(
                 input_dim=dim, output_dim=dim, weights_init=initialization.Identity(2),
                 biases_init=initialization.Constant(0))
    doubler.initialize()

    lin, gate = fork.apply(doubler.apply(x))
    h_doubler = gru.apply(lin,gate)

    f = theano.function([x], h_doubler)
    print(f(np.ones((dim, 1, dim), dtype=theano.config.floatX))) 
開發者ID:DjAntaki,項目名稱:IFT6266H16,代碼行數:27,代碼來源:rnn_examples.py

示例4: __init__

    def __init__(self, 
                 vocab_size, 
                 embedding_dim, 
                 n_layers, 
                 skip_connections, 
                 state_dim, 
                 **kwargs):
        """Sole constructor.
        
        Args:
            vocab_size (int): Source vocabulary size
            embedding_dim (int): Dimension of the embedding layer
            n_layers (int): Number of layers. Layers share the same
                            weight matrices.
            skip_connections (bool): Skip connections connect the
                                     source word embeddings directly 
                                     with deeper layers to propagate 
                                     the gradient more efficiently
            state_dim (int): Number of hidden units in the recurrent
                             layers.
        """
        super(BidirectionalEncoder, self).__init__(**kwargs)
        self.vocab_size = vocab_size
        self.embedding_dim = embedding_dim
        self.n_layers = n_layers
        self.state_dim = state_dim
        self.skip_connections = skip_connections

        self.lookup = LookupTable(name='embeddings')
        if self.n_layers >= 1:
            self.bidir = BidirectionalWMT15(
                GatedRecurrent(activation=Tanh(), dim=state_dim))
            self.fwd_fork = Fork(
                [name for name in self.bidir.prototype.apply.sequences
                 if name != 'mask'], prototype=Linear(), name='fwd_fork')
            self.back_fork = Fork(
                [name for name in self.bidir.prototype.apply.sequences
                 if name != 'mask'], prototype=Linear(), name='back_fork')
            self.children = [self.lookup, self.bidir,
                             self.fwd_fork, self.back_fork]
            if self.n_layers > 1: # Deep encoder
                self.mid_fwd_fork = Fork(
                    [name for name in self.bidir.prototype.apply.sequences
                     if name != 'mask'], prototype=Linear(), name='mid_fwd_fork')
                self.mid_back_fork = Fork(
                    [name for name in self.bidir.prototype.apply.sequences
                     if name != 'mask'], prototype=Linear(), name='mid_back_fork')
                self.children.append(self.mid_fwd_fork)
                self.children.append(self.mid_back_fork)
        elif self.n_layers == 0:
            self.embedding_dim = state_dim*2
            self.children = [self.lookup]
        else:
            logging.fatal("Number of encoder layers must be non-negative")
開發者ID:ucam-smt,項目名稱:sgnmt,代碼行數:54,代碼來源:encoder.py

示例5: gru_layer

def gru_layer(dim, h, n):
    fork = Fork(
        output_names=["linear" + str(n), "gates" + str(n)],
        name="fork" + str(n),
        input_dim=dim,
        output_dims=[dim, dim * 2],
    )
    gru = GatedRecurrent(dim=dim, name="gru" + str(n))
    initialize([fork, gru])
    linear, gates = fork.apply(h)
    return gru.apply(linear, gates)
開發者ID:teganmaharaj,項目名稱:deeplearningclass,代碼行數:11,代碼來源:model.py

示例6: __init__

    def __init__(self, vocab_size, embedding_dim, state_dim, **kwargs):
        super(BidirectionalEncoder, self).__init__(**kwargs)
        self.vocab_size = vocab_size
        self.embedding_dim = embedding_dim
        self.state_dim = state_dim

        self.lookup = LookupTable(name='embeddings')
        self.bidir = BidirectionalWMT15(GatedRecurrent(activation=Tanh(), dim=state_dim))
        self.fwd_fork = Fork([name for name in self.bidir.prototype.apply.sequences
                          if name != 'mask'], prototype=Linear(), name='fwd_fork')
        self.back_fork = Fork([name for name in self.bidir.prototype.apply.sequences
                          if name != 'mask'], prototype=Linear(), name='back_fork')

        self.children = [self.lookup, self.bidir, self.fwd_fork, self.back_fork]
開發者ID:rizar,項目名稱:NMT,代碼行數:14,代碼來源:model.py

示例7: BidirectionalEncoder

class BidirectionalEncoder(Initializable):
    """Encoder of RNNsearch model."""

    def __init__(self, vocab_size, embedding_dim, state_dim, **kwargs):
        super(BidirectionalEncoder, self).__init__(**kwargs)
        self.vocab_size = vocab_size
        self.embedding_dim = embedding_dim
        self.state_dim = state_dim

        self.lookup = LookupTable(name='embeddings')
        self.bidir = BidirectionalWMT15(
            GatedRecurrent(activation=Tanh(), dim=state_dim))
        self.fwd_fork = Fork(
            [name for name in self.bidir.prototype.apply.sequences
             if name != 'mask'], prototype=Linear(), name='fwd_fork')
        self.back_fork = Fork(
            [name for name in self.bidir.prototype.apply.sequences
             if name != 'mask'], prototype=Linear(), name='back_fork')

        self.children = [self.lookup, self.bidir,
                         self.fwd_fork, self.back_fork]

    def _push_allocation_config(self):
        self.lookup.length = self.vocab_size
        self.lookup.dim = self.embedding_dim

        self.fwd_fork.input_dim = self.embedding_dim
        self.fwd_fork.output_dims = [self.bidir.children[0].get_dim(name)
                                     for name in self.fwd_fork.output_names]
        self.back_fork.input_dim = self.embedding_dim
        self.back_fork.output_dims = [self.bidir.children[1].get_dim(name)
                                      for name in self.back_fork.output_names]

    @application(inputs=['source_sentence', 'source_sentence_mask'],
                 outputs=['representation'])
    def apply(self, source_sentence, source_sentence_mask):
        # Time as first dimension
        source_sentence = source_sentence.T
        source_sentence_mask = source_sentence_mask.T

        embeddings = self.lookup.apply(source_sentence)

        representation = self.bidir.apply(
            merge(self.fwd_fork.apply(embeddings, as_dict=True),
                  {'mask': source_sentence_mask}),
            merge(self.back_fork.apply(embeddings, as_dict=True),
                  {'mask': source_sentence_mask})
        )
        return representation
開發者ID:LynetteXing1991,項目名稱:TAJA-Seq2Seq,代碼行數:49,代碼來源:model.py

示例8: __init__

    def __init__(self, nvis, nhid, encoding_mlp, encoding_lstm, decoding_mlp,
                 decoding_lstm, T=1, **kwargs):
        super(DRAW, self).__init__(**kwargs)

        self.nvis = nvis
        self.nhid = nhid
        self.T = T

        self.encoding_mlp = encoding_mlp
        self.encoding_mlp.name = 'encoder_mlp'
        for i, child in enumerate(self.encoding_mlp.children):
            child.name = '{}_{}'.format(self.encoding_mlp.name, i)
        self.encoding_lstm = encoding_lstm
        self.encoding_lstm.name = 'encoder_lstm'
        self.encoding_parameter_mapping = Fork(
            output_names=['mu_phi', 'log_sigma_phi'], prototype=Linear())

        self.decoding_mlp = decoding_mlp
        self.decoding_mlp.name = 'decoder_mlp'
        for i, child in enumerate(self.decoding_mlp.children):
            child.name = '{}_{}'.format(self.decoding_mlp.name, i)
        self.decoding_lstm = decoding_lstm
        self.decoding_lstm.name = 'decoder_lstm'
        self.decoding_parameter_mapping = Linear(name='mu_theta')

        self.prior_mu = tensor.zeros((self.nhid,))
        self.prior_mu.name = 'prior_mu'
        self.prior_log_sigma = tensor.zeros((self.nhid,))
        self.prior_log_sigma.name = 'prior_log_sigma'

        self.children = [self.encoding_mlp, self.encoding_lstm,
                         self.encoding_parameter_mapping,
                         self.decoding_mlp, self.decoding_lstm,
                         self.decoding_parameter_mapping]
開發者ID:vdumoulin,項目名稱:research,代碼行數:34,代碼來源:draw.py

示例9: RecurrentWithFork

class RecurrentWithFork(Initializable):

    @lazy(allocation=['input_dim'])
    def __init__(self, recurrent, input_dim, **kwargs):
        super(RecurrentWithFork, self).__init__(**kwargs)
        self.recurrent = recurrent
        self.input_dim = input_dim
        self.fork = Fork(
            [name for name in self.recurrent.sequences
             if name != 'mask'],
             prototype=Linear())
        self.children = [recurrent.brick, self.fork]

    def _push_allocation_config(self):
        self.fork.input_dim = self.input_dim
        self.fork.output_dims = [self.recurrent.brick.get_dim(name)
                                 for name in self.fork.output_names]

    @application(inputs=['input_', 'mask'])
    def apply(self, input_, mask=None, **kwargs):
        return self.recurrent(
            mask=mask, **dict_union(self.fork.apply(input_, as_dict=True),
                                    kwargs))

    @apply.property('outputs')
    def apply_outputs(self):
        return self.recurrent.states
開發者ID:DingKe,項目名稱:attention-lvcsr,代碼行數:27,代碼來源:__init__.py

示例10: __init__

    def __init__(self, transition, input_dim, hidden_dim,
                 rec_weights_init, ff_weights_init, biases_init, **kwargs):
        super(RecurrentWithFork, self).__init__(**kwargs)
        self.rec_weights_init=rec_weights_init
        self.ff_weights_init=ff_weights_init
        self.biases_init=biases_init
        self.input_dim=input_dim
        self.hidden_dim=hidden_dim

        self.transition=transition
        self.transition.dim=self.hidden_dim
        self.transition.weights_init=self.rec_weights_init
        self.transition.bias_init=self.biases_init


        self.fork = Fork(
            [name for name in self.transition.apply.sequences if name != 'mask'],
             prototype=Linear())
        self.fork.input_dim = self.input_dim
        self.fork.output_dims = [self.transition.apply.brick.get_dim(name)
                                 for name in self.fork.output_names]
        self.fork.weights_init=self.ff_weights_init
        self.fork.biases_init=self.biases_init

        self.children = [transition, self.fork]
開發者ID:Richi91,項目名稱:SpeechRecognition,代碼行數:25,代碼來源:model.py

示例11: __init__

    def __init__(self, inner_input_dim, outer_input_dim, inner_dim, **kwargs):
        self.inner_gru = GatedRecurrent(dim=inner_dim, name='inner_gru')

        self.inner_input_fork = Fork(
            output_names=[name for name in self.inner_gru.apply.sequences
                          if 'mask' not in name],
            input_dim=inner_input_dim, name='inner_input_fork')
        self.outer_input_fork = Fork(
            output_names=[name for name in self.inner_gru.apply.sequences
                          if 'mask' not in name],
            input_dim=outer_input_dim, name='inner_outer_fork')

        super(InnerRecurrent, self).__init__(**kwargs)

        self.children = [
            self.inner_gru, self.inner_input_fork, self.outer_input_fork]
開發者ID:Beronx86,項目名稱:blocks,代碼行數:16,代碼來源:test_model.py

示例12: __init__

 def __init__(self, recurrent, input_dim, **kwargs):
     super(RecurrentWithFork, self).__init__(**kwargs)
     self.recurrent = recurrent
     self.input_dim = input_dim
     self.fork = Fork(
         [name for name in self.recurrent.sequences
          if name != 'mask'], prototype=Linear())
     self.children = [recurrent.brick, self.fork]
開發者ID:sotelo,項目名稱:parrot,代碼行數:8,代碼來源:model.py

示例13: BidirectionalEncoder

class BidirectionalEncoder(Initializable):
    """ Bidirectional GRU encoder. """

    def __init__(self, embedding_dim, state_dim, **kwargs):
        super(BidirectionalEncoder, self).__init__(**kwargs)
        # Dimension of the word embeddings taken as input
        self.embedding_dim = embedding_dim
        # Hidden state dimension
        self.state_dim = state_dim

        # The bidir GRU
        self.bidir = BidirectionalFromDict(
            GatedRecurrent(activation=Tanh(), dim=state_dim))
        # Forks to administer the inputs of GRU gates
        self.fwd_fork = Fork(
            [name for name in self.bidir.prototype.apply.sequences
             if name != 'mask'], prototype=Linear(), name='fwd_fork')
        self.back_fork = Fork(
            [name for name in self.bidir.prototype.apply.sequences
             if name != 'mask'], prototype=Linear(), name='back_fork')

        self.children = [self.bidir,
                         self.fwd_fork, self.back_fork]

    def _push_allocation_config(self):
        self.fwd_fork.input_dim = self.embedding_dim
        self.fwd_fork.output_dims = [self.bidir.children[0].get_dim(name)
                                     for name in self.fwd_fork.output_names]
        self.back_fork.input_dim = self.embedding_dim
        self.back_fork.output_dims = [self.bidir.children[1].get_dim(name)
                                      for name in self.back_fork.output_names]


    @application(inputs=['source_sentence_tbf', 'source_sentence_mask_tb'],
                 outputs=['representation'])
    def apply(self, source_sentence_tbf, source_sentence_mask_tb=None):

        representation_tbf = self.bidir.apply(
            merge(self.fwd_fork.apply(source_sentence_tbf, as_dict=True),
                  {'mask': source_sentence_mask_tb}),
            merge(self.back_fork.apply(source_sentence_tbf, as_dict=True),
                  {'mask': source_sentence_mask_tb})
        )
        return representation_tbf
開發者ID:BinbinBian,項目名稱:asreader,代碼行數:44,代碼來源:text_comprehension_base.py

示例14: InnerRecurrent

class InnerRecurrent(BaseRecurrent, Initializable):
    def __init__(self, inner_input_dim, outer_input_dim, inner_dim, **kwargs):
        self.inner_gru = GatedRecurrent(dim=inner_dim, name='inner_gru')

        self.inner_input_fork = Fork(
            output_names=[name for name in self.inner_gru.apply.sequences
                          if 'mask' not in name],
            input_dim=inner_input_dim, name='inner_input_fork')
        self.outer_input_fork = Fork(
            output_names=[name for name in self.inner_gru.apply.sequences
                          if 'mask' not in name],
            input_dim=outer_input_dim, name='inner_outer_fork')

        super(InnerRecurrent, self).__init__(**kwargs)

        self.children = [
            self.inner_gru, self.inner_input_fork, self.outer_input_fork]

    def _push_allocation_config(self):
        self.inner_input_fork.output_dims = self.inner_gru.get_dims(
            self.inner_input_fork.output_names)
        self.outer_input_fork.output_dims = self.inner_gru.get_dims(
            self.outer_input_fork.output_names)

    @recurrent(sequences=['inner_inputs'], states=['states'],
               contexts=['outer_inputs'], outputs=['states'])
    def apply(self, inner_inputs, states, outer_inputs):
        forked_inputs = self.inner_input_fork.apply(inner_inputs, as_dict=True)
        forked_states = self.outer_input_fork.apply(outer_inputs, as_dict=True)

        gru_inputs = {key: forked_inputs[key] + forked_states[key]
                      for key in forked_inputs.keys()}

        new_states = self.inner_gru.apply(
            iterate=False,
            **dict_union(gru_inputs, {'states': states}))
        return new_states  # mean according to the time axis

    def get_dim(self, name):
        if name == 'states':
            return self.inner_gru.get_dim(name)
        else:
            return AttributeError
開發者ID:Beronx86,項目名稱:blocks,代碼行數:43,代碼來源:test_model.py

示例15: RecurrentWithFork

class RecurrentWithFork(Initializable):

    @lazy(allocation=['input_dim'])
    def __init__(self, transition, input_dim, hidden_dim,
                 rec_weights_init, ff_weights_init, biases_init, **kwargs):
        super(RecurrentWithFork, self).__init__(**kwargs)
        self.rec_weights_init=rec_weights_init
        self.ff_weights_init=ff_weights_init
        self.biases_init=biases_init
        self.input_dim=input_dim
        self.hidden_dim=hidden_dim

        self.transition=transition
        self.transition.dim=self.hidden_dim
        self.transition.weights_init=self.rec_weights_init
        self.transition.bias_init=self.biases_init


        self.fork = Fork(
            [name for name in self.transition.apply.sequences if name != 'mask'],
             prototype=Linear())
        self.fork.input_dim = self.input_dim
        self.fork.output_dims = [self.transition.apply.brick.get_dim(name)
                                 for name in self.fork.output_names]
        self.fork.weights_init=self.ff_weights_init
        self.fork.biases_init=self.biases_init

        self.children = [transition, self.fork]

#    def _push_allocation_config(self):#
#        #super(RecurrentWithFork, self)._push_allocation_config()
#        self.transition.dim=self.hidden_dim
#        self.fork.input_dim = self.input_dim
#        self.fork.output_dims = [self.transition.apply.brick.get_dim(name)
#                                 for name in self.fork.output_names]

#    def _push_initialization_config(self):
#        #super(RecurrentWithFork, self)._push_initialization_config()
#        self.fork.weights_init=self.ff_weights_init
#        self.fork.biases_init=self.biases_init
#        self.transition.weights_init=self.rec_weights_init
#        self.transition.bias_init=self.biases_init

    @application(inputs=['input_', 'mask'])
    def apply(self, input_, mask=None, **kwargs):
        states=self.transition.apply(
            mask=mask, **dict_union(self.fork.apply(input_, as_dict=True), kwargs))
        # I don't know, why blocks returns a list [states, cell] for LSTM
        # but just states (no list) for GRU or normal RNN. We only want LSTM's states.
        # cells should not be visible from outside.
        return states[0] if isinstance(states,list) else states

    @apply.property('outputs')
    def apply_outputs(self):
        return self.transition.apply.states
開發者ID:Richi91,項目名稱:SpeechRecognition,代碼行數:55,代碼來源:model.py


注:本文中的blocks.bricks.parallel.Fork類示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。