當前位置: 首頁>>代碼示例>>Python>>正文


Python cost.MisclassificationRate類代碼示例

本文整理匯總了Python中blocks.bricks.cost.MisclassificationRate的典型用法代碼示例。如果您正苦於以下問題:Python MisclassificationRate類的具體用法?Python MisclassificationRate怎麽用?Python MisclassificationRate使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。


在下文中一共展示了MisclassificationRate類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: setup_model

def setup_model(configs):
    tensor5 = theano.tensor.TensorType(config.floatX, (False,) * 5)
    # shape: T x B x C x X x Y
    input_ = tensor5("features")
    tensor3 = theano.tensor.TensorType(config.floatX, (False,) * 3)
    locs = tensor3("locs")
    # shape: B x Classes
    target = T.ivector("targets")

    model = LSTMAttention(configs, weights_init=Glorot(), biases_init=Constant(0))
    model.initialize()

    (h, c, location, scale, alpha, patch, downn_sampled_input, conved_part_1, conved_part_2, pre_lstm) = model.apply(
        input_, locs
    )

    model.location = location
    model.scale = scale
    model.alpha = location
    model.patch = patch

    classifier = MLP(
        [Rectifier(), Softmax()], configs["classifier_dims"], weights_init=Glorot(), biases_init=Constant(0)
    )
    classifier.initialize()

    probabilities = classifier.apply(h[-1])
    cost = CategoricalCrossEntropy().apply(target, probabilities)
    cost.name = "CE"
    error_rate = MisclassificationRate().apply(target, probabilities)
    error_rate.name = "ER"
    model.cost = cost
    model.error_rate = error_rate
    model.probabilities = probabilities

    if configs["load_pretrained"]:
        blocks_model = Model(model.cost)
        all_params = blocks_model.parameters
        with open("VGG_CNN_params.npz") as f:
            loaded = np.load(f)
            all_conv_params = loaded.keys()
            for param in all_params:
                if param.name in loaded.keys():
                    assert param.get_value().shape == loaded[param.name].shape
                    param.set_value(loaded[param.name])
                    all_conv_params.pop(all_conv_params.index(param.name))
        print "the following parameters did not match: " + str(all_conv_params)

    if configs["test_model"]:
        print "TESTING THE MODEL: CHECK THE INPUT SIZE!"
        cg = ComputationGraph(model.cost)
        f = theano.function(cg.inputs, [model.cost], on_unused_input="ignore", allow_input_downcast=True)
        data = configs["get_streams"](configs["batch_size"])[0].get_epoch_iterator().next()
        f(data[1], data[0], data[2])

        print "Test passed! ;)"

    model.monitorings = [cost, error_rate]

    return model
開發者ID:negar-rostamzadeh,項目名稱:rna,代碼行數:60,代碼來源:cooking.py

示例2: apply

    def apply(self, input_lb, input_un, target):
        batch_size = input_lb.shape[0]
        get_labeled = lambda x: x[:batch_size] if x is not None else x
        input = T.concatenate([input_lb, input_un], axis=0)
        self.layer_dims = {0: self.input_dim}
        self.lr = self.shared(self.default_lr, "learning_rate", role=None)
        top = len(self.layers) - 1

        clean = self.encoder(input, noise_std=[0])
        corr = self.encoder(input, noise_std=self.noise_std)

        ests, costs = self.decoder(clean, corr, batch_size)

        # Costs
        y = target.flatten()

        costs.class_clean = CategoricalCrossEntropy().apply(y, get_labeled(clean.h[top]))
        costs.class_clean.name = "CE_clean"

        costs.class_corr = CategoricalCrossEntropy().apply(y, get_labeled(corr.h[top]))
        costs.class_corr.name = "CE_corr"

        costs.total = costs.class_corr * 1.0
        for i in range(len(self.layers)):
            costs.total += costs.denois[i] * self.denoising_cost_x[i]
        costs.total.name = "Total_cost"

        self.costs = costs

        # Classification error
        mr = MisclassificationRate()
        self.error = mr.apply(y, get_labeled(clean.h[top])) * np.float32(100.0)
        self.error.name = "Error_rate"
開發者ID:mohammadpz,項目名稱:ladder_network,代碼行數:33,代碼來源:ladder.py

示例3: maxout_vae_mnist_test

def maxout_vae_mnist_test(path_vae_mnist):

    # load vae model on mnist
    vae_mnist = load(path_vae_mnist)
    maxout = Maxout()
    x = T.matrix('features')
    y = T.imatrix('targets')
    batch_size = 128
    z, _ = vae_mnist.sampler.sample(vae_mnist.encoder_mlp.apply(x))
    predict = maxout.apply(z)

    cost = Softmax().categorical_cross_entropy(y.flatten(), predict)
    y_hat = Softmax().apply(predict)
    cost.name = 'cost'
    cg = ComputationGraph(cost)

    temp = cg.parameters
    for t, i in zip(temp, range(len(temp))):
        t.name = t.name+str(i)+"maxout"

    error_brick = MisclassificationRate()
    error_rate = error_brick.apply(y, y_hat) 

    # training
    step_rule = RMSProp(0.01, 0.9)
    #step_rule = Momentum(0.2, 0.9)
    train_set = MNIST('train')
    test_set = MNIST("test")

    data_stream_train = Flatten(DataStream.default_stream(
            train_set, iteration_scheme=SequentialScheme(train_set.num_examples, batch_size)))

    data_stream_test =Flatten(DataStream.default_stream(
            test_set, iteration_scheme=SequentialScheme(test_set.num_examples, batch_size)))

    algorithm = GradientDescent(cost=cost, params=cg.parameters,
                                step_rule=step_rule)

    monitor_train = TrainingDataMonitoring(
        variables=[cost], data_stream=data_stream_train, prefix="train")
    monitor_valid = DataStreamMonitoring(
        variables=[cost, error_rate], data_stream=data_stream_test, prefix="test")


    extensions = [  monitor_train,
                    monitor_valid,
                    FinishAfter(after_n_epochs=50),
                    Printing(every_n_epochs=1)
                  ]

    main_loop = MainLoop(data_stream=data_stream_train,
                        algorithm=algorithm, model = Model(cost),
                        extensions=extensions)
    main_loop.run()

    # save here
    from blocks.serialization import dump
    with closing(open('../data_mnist/maxout', 'w')) as f:
	    dump(maxout, f)
開發者ID:mducoffe,項目名稱:random_test_VAE,代碼行數:59,代碼來源:test_maxout_vae_mnist.py

示例4: setup_model

def setup_model(configs):

    tensor5 = theano.tensor.TensorType(config.floatX, (False,) * 5)
    # shape: T x B x C x X x Y
    input_ = tensor5('features')
    # shape: B x Classes
    target = T.lmatrix('targets')

    model = LSTMAttention(
        configs,
        weights_init=Glorot(),
        biases_init=Constant(0))
    model.initialize()

    (h, c, location, scale, patch, downn_sampled_input,
        conved_part_1, conved_part_2, pre_lstm) = model.apply(input_)

    classifier = MLP(
        [Rectifier(), Logistic()],
        configs['classifier_dims'],
        weights_init=Glorot(),
        biases_init=Constant(0))
    classifier.initialize()

    probabilities = classifier.apply(h[-1])
    cost = BinaryCrossEntropy().apply(target, probabilities)
    cost.name = 'CE'
    error_rate = MisclassificationRate().apply(target, probabilities)
    error_rate.name = 'ER'
    model.cost = cost

    if configs['load_pretrained']:
        blocks_model = Model(model.cost)
        all_params = blocks_model.parameters
        with open('VGG_CNN_params.npz') as f:
            loaded = np.load(f)
            all_conv_params = loaded.keys()
            for param in all_params:
                if param.name in loaded.keys():
                    assert param.get_value().shape == loaded[param.name].shape
                    param.set_value(loaded[param.name])
                    all_conv_params.pop(all_conv_params.index(param.name))
        print "the following parameters did not match: " + str(all_conv_params)

    if configs['test_model']:
        cg = ComputationGraph(model.cost)
        f = theano.function(cg.inputs, [model.cost],
                            on_unused_input='ignore',
                            allow_input_downcast=True)
        data = np.random.randn(10, 40, 3, 224, 224)
        targs = np.random.randn(40, 101)
        f(data, targs)
        print "Test passed! ;)"

    model.monitorings = [cost, error_rate]

    return model
開發者ID:mohammadpz,項目名稱:rna,代碼行數:57,代碼來源:main.py

示例5: test_misclassification_rate

def test_misclassification_rate():
    y = tensor.vector(dtype="int32")
    yhat = tensor.matrix(theano.config.floatX)
    top1_brick = MisclassificationRate()
    top2_brick = MisclassificationRate(top_k=2)
    top3_brick = MisclassificationRate(top_k=3)
    f = theano.function([y, yhat], [top1_brick.apply(y, yhat), top2_brick.apply(y, yhat), top3_brick.apply(y, yhat)])
    y_ = numpy.array([2, 1, 0, 1, 2], dtype="int32")
    yhat_ = numpy.array([[3, 2, 1, 0], [1, 8, 2, 1], [3, 8, 1, 2], [1, 6, 4, 2], [9, 7, 5, 5]], dtype="float32")
    top1_error = 0.6
    top2_error = 0.4
    top3_error = 0.2
    assert_allclose([top1_error, top2_error, top3_error], f(y_, yhat_))
開發者ID:gilbertoIglesias,項目名稱:blocks,代碼行數:13,代碼來源:test_cost.py

示例6: apply

    def apply(self, input_labeled, target_labeled, input_unlabeled):
        self.layer_counter = 0
        self.layer_dims = {0: self.input_dim}
        self.lr = self.shared(self.default_lr, 'learning_rate', role=None)
        top = len(self.layers) - 1

        num_labeled = input_labeled.shape[0]
        self.join = lambda l, u: T.concatenate([l, u], axis=0)
        self.labeled = lambda x: x[:num_labeled] if x is not None else x
        self.unlabeled = lambda x: x[num_labeled:] if x is not None else x
        self.split_lu = lambda x: (self.labeled(x), self.unlabeled(x))

        input_concat = self.join(input_labeled, input_unlabeled)

        clean = self.encoder(input_concat, 'clean',
                             input_noise_std=0.0,
                             noise_std=[])
        corr = self.encoder(input_concat, 'corr',
                            input_noise_std=self.super_noise_std,
                            noise_std=self.f_local_noise_std)

        est, costs = self.decoder(clean, corr)

        # Costs
        y = target_labeled.flatten()

        costs.class_clean = CategoricalCrossEntropy().apply(
            y, clean.labeled.h[top])
        costs.class_clean.name = 'CE_clean'

        costs.class_corr = CategoricalCrossEntropy().apply(
            y, corr.labeled.h[top])
        costs.class_corr.name = 'CE_corr'

        costs.total = costs.class_corr * 1.0
        for i in range(len(self.layers)):
            costs.total += costs.denois[i] * self.denoising_cost_x[i]
        costs.total.name = 'Total_cost'

        self.costs = costs

        # Classification error
        mr = MisclassificationRate()
        self.error = mr.apply(y, clean.labeled.h[top]) * np.float32(100.)
        self.error.name = 'Error_rate'
開發者ID:codeaudit,項目名稱:ladder_network,代碼行數:45,代碼來源:ladder.py

示例7: Uniform

mlp.weights_init = Uniform(0.0, 0.01)
mlp.biases_init = Constant(0.0)
mlp.initialize()

lin = Linear(200, 10, use_bias=True)
lin.weights_init = Uniform(0.0, 0.01)
lin.biases_init = Constant(0.0)
lin.initialize()

train_out = lin.apply(mlp.apply(flat_x))
test_out = lin.apply(mlp.apply(flat_x))

sm = Softmax(name='softmax')
loss = sm.categorical_cross_entropy(flat_y, train_out).mean()
loss.name = 'nll'
misclass = MisclassificationRate().apply(flat_y, train_out)
misclass.name = 'misclass'

test_loss = sm.categorical_cross_entropy(flat_y, test_out).mean()
test_loss.name = 'nll'
test_misclass = MisclassificationRate().apply(flat_y, test_out)
test_misclass.name = 'misclass'

model = Model(loss)

######################
# Data
######################
import numpy 
#from mnist import MNIST
from fuel.datasets.mnist import MNIST
開發者ID:harmdevries89,項目名稱:lvq,代碼行數:31,代碼來源:train_softmax.py

示例8: build_submodel


#.........這裏部分代碼省略.........
    # reguarding the batch dropout : the dropout is applied on the filter
    # which is equivalent to the output dimension
    # you have to look at the dropout_rate of the next layer
    # that is why we throw away the first value of L_exo_dropout_full_layers
    L_exo_dropout_full_layers = L_exo_dropout_full_layers[1:]
    pre_dim = output_dim
    print "When constructing the model, the output_dim of the conv section is %d." % output_dim
    if len(L_dim_full_layers):
        for (dim, activation_str,
            dropout, index) in zip(L_dim_full_layers,
                                  L_activation_full,
                                  L_exo_dropout_full_layers,
                                  range(len(L_dim_conv_layers),
                                        len(L_dim_conv_layers)+ 
                                        len(L_dim_full_layers))
                                   ):
                                          
                # TO DO : leaky relu
                if activation_str.lower() == 'rectifier':
                    activation = Rectifier().apply
                elif activation_str.lower() == 'tanh':
                    activation = Tanh().apply
                elif activation_str.lower() in ['sigmoid', 'logistic']:
                    activation = Logistic().apply
                elif activation_str.lower() in ['id', 'identity']:
                    activation = Identity().apply
                else:
                    raise Exception("unknown activation function : %s", activation_str)

                assert 0.0 <= dropout and dropout < 1.0
                dim = dim - int(dim*dropout)
                print "When constructing the fully-connected section, we apply dropout %f to add an MLP going from pre_dim %d to dim %d." % (dropout, pre_dim, dim)

                layer_full = MLP(activations=[activation], dims=[pre_dim, dim],
                                 weights_init=Uniform(width=0.1),
                                 biases_init=Constant(0.0),
                                name="layer_%d" % index)
                layer_full.initialize()
                full_layers.append(layer_full)
                pre_dim = dim

        for layer in full_layers:
            output_mlp = layer.apply(output_mlp)

        output_dim = L_dim_full_layers[-1] - int(L_dim_full_layers[-1]*L_exo_dropout_full_layers[-1])

    # COST FUNCTION
    output_layer = Linear(output_dim, prediction,
                          weights_init=Uniform(width=0.1),
                          biases_init=Constant(0.0),
                          name="layer_"+str(len(L_dim_conv_layers)+ 
                                            len(L_dim_full_layers))
                          )
    output_layer.initialize()
    full_layers.append(output_layer)
    y_pred = output_layer.apply(output_mlp)
    y_hat = Softmax().apply(y_pred)
    # SOFTMAX and log likelihood
    y_pred = Softmax().apply(y_pred)
    # be careful. one version expects the output of a softmax; the other expects just the
    # output of the network
    cost = CategoricalCrossEntropy().apply(y.flatten(), y_pred)
    #cost = Softmax().categorical_cross_entropy(y.flatten(), y_pred)
    cost.name = "cost"

    # Misclassification
    error_rate_brick = MisclassificationRate()
    error_rate = error_rate_brick.apply(y.flatten(), y_hat)
    error_rate.name = "error_rate"

    # put names

    D_params, D_kind = build_params(x, T.matrix(), conv_layers, full_layers)
    # test computation graph
    

    cg = ComputationGraph(cost)

    # DROPOUT
    L_endo_dropout = L_endo_dropout_conv_layers + L_endo_dropout_full_layers

    cg_dropout = cg
    inputs = VariableFilter(roles=[INPUT])(cg.variables)

    for (index, drop_rate) in enumerate(L_endo_dropout):
        for input_ in inputs:
            m = re.match(r"layer_(\d+)_apply.*", input_.name)
            if m and index == int(m.group(1)):
                if drop_rate < 0.0001:
                    print "Skipped applying dropout on %s because the dropout rate was under 0.0001." % input_.name
                    break
                else:
                    cg_dropout = apply_dropout(cg, [input_], drop_rate)
                    print "Applied dropout %f on %s." % (drop_rate, input_.name)
                    break


    cg = cg_dropout

    return (cg, error_rate, cost, D_params, D_kind)
開發者ID:gyom,項目名稱:voltmeleon,代碼行數:101,代碼來源:build_model.py

示例9: main


#.........這裏部分代碼省略.........
    classification_mlp3 = MLP(activations=[Softmax()], dims=[fc_dim, num_classes], name='MPL_class3', **inits)

    edram = EDRAM(channels=channels, out_height=w_height, out_width=w_width, n_iter=n_iter, num_classes=num_classes, rectifier=rectifier, conv1=conv1,
                  conv1_bn=conv1_bn, conv2=conv2, conv2_bn=conv2_bn, max_pooling=max_pooling, conv3=conv3, conv3_bn=conv3_bn, conv4=conv4, conv4_bn=conv4_bn,
                  conv5=conv5, conv5_bn=conv5_bn, conv6=conv6, conv6_bn=conv6_bn, conv_mlp=conv_mlp, conv_mlp_bn=conv_mlp_bn,
                  loc_mlp=loc_mlp, loc_mlp_bn=loc_mlp_bn, conv_init=conv_init, encoder_mlp=encoder_mlp, encoder_rnn=encoder_rnn, decoder_mlp=decoder_mlp,
                  decoder_rnn=decoder_rnn, classification_mlp1=classification_mlp1, classification_mlp1_bn=classification_mlp1_bn,
                  classification_mlp2=classification_mlp2, classification_mlp2_bn=classification_mlp2_bn, classification_mlp3=classification_mlp3,
                  emit_mlp=emit_mlp)
    edram.initialize()

    # ------------------------------------------------------------------------
    x = T.ftensor4('features')
    x_coarse = T.ftensor4('features_coarse')
    y = T.ivector('labels')
    wr = T.fmatrix('locations')

    with batch_normalization(edram):
        bn_p, bn_l, m_c1_bn, s_c1_bn, m_c2_bn, s_c2_bn, m_c3_bn, s_c3_bn, m_c4_bn, s_c4_bn, m_c5_bn, s_c5_bn, m_c6_bn, s_c6_bn, \
        m_c_bn, s_c_bn, m_l_bn, s_l_bn, m_cl1_bn, s_cl1_bn, m_cl2_bn, s_cl2_bn = edram.calculate_train(x, x_coarse)

    def compute_cost(p, wr, y, l):
        cost_where = T.dot(T.sqr(wr - l), [1, 0.5, 1, 0.5, 1, 1])
        cost_y = T.stack([T.nnet.categorical_crossentropy(T.maximum(p[i, :], 1e-7), y) for i in range(0, n_iter)])

        return cost_where, cost_y

    cost_where, cost_y = compute_cost(bn_p, wr, y, bn_l)
    bn_cost = cost_y + cost_where
    bn_cost = bn_cost.sum(axis=0)
    bn_cost = bn_cost.mean()
    bn_cost.name = 'cost'

    bn_error_rate = MisclassificationRate().apply(y, bn_p[-1])
    bn_error_rate.name = 'error_rate'

    # ------------------------------------------------------------
    bn_cg = ComputationGraph([bn_cost, bn_error_rate])

    # Prepare algorithm
    algorithm = GradientDescent(
        cost=bn_cg.outputs[0],
        on_unused_sources='ignore',
        parameters=bn_cg.parameters,
        step_rule=CompositeRule([
            RemoveNotFinite(),
            StepClipping(10.),
            Adam(learning_rate)
        ])
    )

    pop_updates = get_batch_normalization_updates(bn_cg)
    update_params = [conv1_bn.population_mean, conv1_bn.population_stdev, conv2_bn.population_mean, conv2_bn.population_stdev, conv3_bn.population_mean,
                     conv3_bn.population_stdev, conv4_bn.population_mean, conv4_bn.population_stdev, conv5_bn.population_mean, conv5_bn.population_stdev,
                     conv6_bn.population_mean, conv6_bn.population_stdev, conv_mlp_bn.population_mean, conv_mlp_bn.population_stdev,
                     loc_mlp_bn.population_mean, loc_mlp_bn.population_stdev, classification_mlp1_bn.population_mean, classification_mlp1_bn.population_stdev,
                     classification_mlp2_bn.population_mean, classification_mlp2_bn.population_stdev]
    update_values = [m_c1_bn, s_c1_bn, m_c2_bn, s_c2_bn, m_c3_bn, s_c3_bn, m_c4_bn, s_c4_bn, m_c5_bn, s_c5_bn, m_c6_bn, s_c6_bn, m_c_bn, s_c_bn, m_l_bn, s_l_bn,
                     m_cl1_bn, s_cl1_bn, m_cl2_bn, s_cl2_bn]

    pop_updates.extend([(p, m) for p, m in zip(update_params, update_values)])

    decay_rate = 0.05
    extra_updates = [(p, m * decay_rate + p * (1 - decay_rate)) for p, m in pop_updates]
    algorithm.add_updates(extra_updates)
開發者ID:ablavatski,項目名稱:EDRAM,代碼行數:66,代碼來源:train_mnist_cluttered.py

示例10: main

def main(feature_maps=None, mlp_hiddens=None, conv_sizes=None, pool_sizes=None, batch_size=None, num_batches=None):
    if feature_maps is None:
        feature_maps = [32, 48, 64, 80, 128, 128]
    if mlp_hiddens is None:
        mlp_hiddens = [1000]
    if conv_sizes is None:
        conv_sizes = [7, 5, 5, 5, 5, 4]
    if pool_sizes is None:
        pool_sizes = [3, 2, 2, 2, 2, 1]
    if batch_size is None:
        batch_size = 64
    conv_steps = [2, 1, 1, 1, 1, 1]  # same as stride
    image_size = (256, 256)
    output_size = 2
    learningRate = 0.001
    drop_prob = 0.5
    weight_noise = 0.75
    num_epochs = 250
    num_batches = None
    host_plot = "http://hades:5090"
    save_to = "ModelSimpleConvNet128_NesterovAdam.pkl"
    graph_name = "CNN_convnet_128_NesterovAdam"
    mode = "CPU_test"  # "CPU_test" or "GPU_run"

    # Use ReLUs everywhere and softmax for the final prediction
    conv_activations = [Rand_Leaky_Rectifier() for _ in feature_maps]
    mlp_activations = [Rand_Leaky_Rectifier() for _ in mlp_hiddens] + [Softmax()]
    convnet = LeNet(
        conv_activations,
        3,
        image_size,
        filter_sizes=zip(conv_sizes, conv_sizes),
        feature_maps=feature_maps,
        pooling_sizes=zip(pool_sizes, pool_sizes),
        conv_steps=zip(conv_steps, conv_steps),
        top_mlp_activations=mlp_activations,
        top_mlp_dims=mlp_hiddens + [output_size],
        border_mode="full",
        weights_init=Glorot(),
        biases_init=Constant(0),
    )
    # We push initialization config to set different initialization schemes
    # for convolutional layers.
    convnet.push_initialization_config()
    convnet.layers[0].weights_init = Glorot()
    convnet.layers[1].weights_init = Constant(0)
    convnet.top_mlp.linear_transformations[0].weights_init = Glorot()
    convnet.top_mlp.linear_transformations[1].weights_init = Constant(0)
    convnet.initialize()
    logging.info("Input dim: {} {} {}".format(*convnet.children[0].get_dim("input_")))
    for i, layer in enumerate(convnet.layers):
        if isinstance(layer, Activation):
            logging.info("Layer {} ({})".format(i, layer.__class__.__name__))
        else:
            logging.info("Layer {} ({}) dim: {} {} {}".format(i, layer.__class__.__name__, *layer.get_dim("output")))
    x = tensor.tensor4("image_features")
    y = tensor.lmatrix("targets")

    # Normalize input and apply the convnet
    probs = convnet.apply(x)
    cost = CategoricalCrossEntropy().apply(y.flatten(), probs).copy(name="cost")
    error_rate = MisclassificationRate().apply(y.flatten(), probs).copy(name="error_rate")
    error_rate2 = error_rate.copy(name="error_rate2")

    cg = ComputationGraph([cost, error_rate])
    weights = VariableFilter(roles=[FILTER, WEIGHT])(cg.variables)

    ############# Dropout #############

    logger.info("Applying dropout")
    cg = apply_dropout(cg, weights[-1:0], drop_prob)  # Dropout only on fully-connected layer
    dropped_out = VariableFilter(roles=[DROPOUT])(cg.variables)

    """
    ############# Guaussian Noise #############

    logger.info('Applying Gaussian noise')
    cg = apply_noise(cg, weights, weight_noise)
    """
    ########### Loading images #####################

    from fuel.datasets.dogs_vs_cats import DogsVsCats
    from fuel.streams import DataStream, ServerDataStream
    from fuel.schemes import ShuffledScheme
    from fuel.transformers.image import RandomFixedSizeCrop, MinimumImageDimensions, Random2DRotation
    from fuel.transformers import Flatten, Cast, ScaleAndShift

    def create_data(data):

        stream = DataStream(data, iteration_scheme=ShuffledScheme(data.num_examples, batch_size))

        # Data Augmentation
        stream = MinimumImageDimensions(stream, image_size, which_sources=("image_features",))
        stream = MaximumImageDimensions(stream, image_size, which_sources=("image_features",))
        stream = RandomHorizontalSwap(stream, which_sources=("image_features",))
        stream = Random2DRotation(stream, which_sources=("image_features",))
        # stream = ScikitResize(stream, image_size, which_sources=('image_features',))

        # Data Preprocessing

#.........這裏部分代碼省略.........
開發者ID:jpilaul,項目名稱:IFT6266_project,代碼行數:101,代碼來源:Model8_Small_Convnet_AdamNesterov.py

示例11: CategoricalCrossEntropy

    biases_init=IsotropicGaussian(),
    prototype=input_mlp,
)
parallel_nets.initialize()
l_h, r_h = parallel_nets.apply(l_x=l_x, r_x=r_x)

# Concatenate the inputs from the two hidden subnets into a single variable
# for input into the next layer.
merge = tensor.concatenate([l_h, r_h], axis=1)

y_hat = output_mlp.apply(merge)

# Define a cost function to optimize, and a classification error rate:
# Also apply the outputs from the net, and corresponding targets:
cost = CategoricalCrossEntropy().apply(y.flatten(), y_hat)
error = MisclassificationRate().apply(y.flatten(), y_hat)
error.name = 'error'

# Need to define the computation graph:
graph = ComputationGraph(cost)

# This returns a list of weight vectors for each layer
W = VariableFilter(roles=[WEIGHT])(graph.variables)

# Add some regularization to this model:
lam = 0.001
cost += lam * l2_norm(W)
cost.name = 'entropy'

# This is the model without dropout, but with l2 reg.
model = Model(cost)
開發者ID:TIGRLab,項目名稱:NI-ML,代碼行數:31,代碼來源:lrnet.py

示例12: train_net

def train_net(net, train_stream, test_stream, L1 = None, L2=None, early_stopping=False,
        finish=None, dropout=False, jobid=None, update=None,
        duration= None,
        **ignored):
    x = tensor.tensor4('image_features')
    y = tensor.lmatrix('targets')

    y_hat = net.apply(x)

    #Cost
    cost_before = CategoricalCrossEntropy().apply(y.flatten(), y_hat)
    cost_before.name = "cost_without_regularization"

    #Error
    #Taken from brodesf
    error = MisclassificationRate().apply(y.flatten(), y_hat)
    error.name = "Misclassification rate"

    #Regularization
    cg = ComputationGraph(cost_before)
    WS = VariableFilter(roles=[WEIGHT])(cg.variables)

    if dropout:
        print("Dropout")
        cg = apply_dropout(cg, WS, 0.5)

    if L1:
        print("L1 with lambda ",L1)
        L1_reg = L1 * sum([abs(W).sum() for W in WS])
        L1_reg.name = "L1 regularization"
        cost_before += L1_reg

    if L2:
        print("L2 with lambda ",L2)
        L2_reg = L2 * sum([(W ** 2).sum() for W in WS])
        L2_reg.name = "L2 regularization"
        cost_before += L2_reg

    cost = cost_before
    cost.name = 'cost_with_regularization'

    #Initialization
    print("Initilization")
    net.initialize()

    #Algorithm
    step_rule = Scale(learning_rate=0.1)
    if update is not None:
        if update == "rmsprop":
            print("Using RMSProp")
            step_rule = RMSProp()

    remove_not_finite = RemoveNotFinite(0.9)
    step_rule = CompositeRule([step_rule, remove_not_finite])
    algorithm = GradientDescent(cost=cost, parameters=cg.parameters, step_rule=step_rule)

    print("Extensions")
    extensions = []

    #Monitoring
    monitor = DataStreamMonitoring(variables=[cost, error], data_stream=test_stream, prefix="test")
    extensions.append(monitor)

    def filename(suffix=""):
        prefix = jobid if jobid else str(os.getpid())
        ctime = str(time.time())
        return "checkpoints/" + prefix + "_" + ctime + "_" + suffix + ".zip"

    #Serialization
    #serialization = Checkpoint(filename())
    #extensions.append(serialization)

    notification = "test_"+error.name
    track = TrackTheBest(notification)
    best_notification = track.notification_name
    checkpointbest = SaveBest(best_notification, filename("best"))
    extensions.extend([track, checkpointbest])

    if early_stopping:
        print("Early stopping")
        stopper = FinishIfNoImprovementAfterPlus(best_notification)
        extensions.append(stopper)

    #Other extensions
    if finish != None:
        print("Force finish ", finish)
        extensions.append(FinishAfter(after_n_epochs=finish))

    if duration != None:
        print("Stop after " , duration, " seconds")
        extensions.append(FinishAfterTime(duration))

    extensions.extend([
        Timing(),
        Printing()
        ])

    #Main loop
    main_loop = MainLoop(data_stream=train_stream, algorithm=algorithm, extensions=extensions)

#.........這裏部分代碼省略.........
開發者ID:refnil,項目名稱:ift6266h16,代碼行數:101,代碼來源:train.py

示例13: training_model_mnist

def training_model_mnist(learning_rate, momentum, iteration, batch_size, epoch_end, iter_batch):

    x = T.tensor4('features')
    y = T.imatrix('targets')

    classifier = build_model_mnist()

    predict = classifier.apply(x)
    y_hat = Softmax().apply(predict)

    cost = Softmax().categorical_cross_entropy(y.flatten(), predict)
    cost.name = "cost"
    cg = ComputationGraph(cost)
    error_brick = MisclassificationRate()
    error_rate = error_brick.apply(y.flatten(), y_hat)
    error_rate.name = "error"


    train_set = MNIST(('train', ))
    test_set = MNIST(("test",))

    if iteration =="slice":
        data_stream = DataStream.default_stream(
                train_set, iteration_scheme=SequentialScheme_slice(train_set.num_examples,
                                                            batch_size))
        data_stream_test = DataStream.default_stream(
                test_set, iteration_scheme=SequentialScheme_slice(test_set.num_examples,
                                                            batch_size))
    else:
        data_stream = DataStream.default_stream(
                train_set, iteration_scheme=SequentialScheme(train_set.num_examples,
                                                            batch_size))

        data_stream_test = DataStream.default_stream(
                test_set, iteration_scheme=SequentialScheme(test_set.num_examples,
                                                            batch_size))

    step_rule = Momentum(learning_rate=learning_rate,
                         momentum=momentum)

    start = time.clock()
    time_spent = shared_floatx(np.float32(0.), name="time_spent")
    time_extension = Time_reference(start, time_spent, every_n_batches=1)

    algorithm = GradientDescent(cost=cost, params=cg.parameters,
                                step_rule=step_rule)

    monitor_train = TrainingDataMonitoring(
        variables=[cost], prefix="train", every_n_epochs=iter_batch)
    monitor_valid = DataStreamMonitoring(
        variables=[cost, error_rate, time_spent], data_stream=data_stream_test, prefix="valid",
        every_n_epochs=iter_batch)

    # add a monitor variable about the time
    extensions = [  monitor_train,
                    monitor_valid,
                    FinishAfter(after_n_epochs=epoch_end),
                    Printing(every_n_epochs=iter_batch),
                    time_extension
                  ]

    main_loop = MainLoop(data_stream=data_stream,
                        algorithm=algorithm, model = Model(cost),
                        extensions=extensions)
    main_loop.run()
開發者ID:mducoffe,項目名稱:Comparison_numpy_slice,代碼行數:65,代碼來源:test_mnist_hdf5.py

示例14: build_and_run

def build_and_run(label, config):
    ############## CREATE THE NETWORK ###############
    #Define the parameters
    num_epochs, num_batches, num_channels, image_shape, filter_size, num_filter, pooling_sizes, mlp_hiddens, output_size, batch_size, activation, mlp_activation  = config['num_epochs'], config['num_batches'], config['num_channels'], config['image_shape'], config['filter_size'], config['num_filter'], config['pooling_sizes'], config['mlp_hiddens'], config['output_size'], config['batch_size'], config['activation'], config['mlp_activation']
#    print(num_epochs, num_channels, image_shape, filter_size, num_filter, pooling_sizes, mlp_hiddens, output_size, batch_size, activation, mlp_activation)
    lambda_l1 = 0.000025
    lambda_l2 = 0.000025

    print("Building model")
    #Create the symbolics variable
    x = T.tensor4('image_features')
    y = T.lmatrix('targets')

    #Get the parameters
    conv_parameters = zip(filter_size, num_filter)

    #Create the convolutions layers
    conv_layers = list(interleave([(Convolutional(
                                      filter_size=filter_size,
                                      num_filters=num_filter,
                                      name='conv_{}'.format(i))
                    for i, (filter_size, num_filter)
                    in enumerate(conv_parameters)),
                  (activation),
            (MaxPooling(size, name='pool_{}'.format(i)) for i, size in enumerate(pooling_sizes))]))
        #    (AveragePooling(size, name='pool_{}'.format(i)) for i, size in enumerate(pooling_sizes))]))

    #Create the sequence
    conv_sequence = ConvolutionalSequence(conv_layers, num_channels, image_size=image_shape, weights_init=Uniform(width=0.2), biases_init=Constant(0.))
    #Initialize the convnet
    conv_sequence.initialize()
    #Add the MLP
    top_mlp_dims = [np.prod(conv_sequence.get_dim('output'))] + mlp_hiddens + [output_size]
    out = Flattener().apply(conv_sequence.apply(x))
    mlp = MLP(mlp_activation, top_mlp_dims, weights_init=Uniform(0, 0.2),
              biases_init=Constant(0.))
    #Initialisze the MLP
    mlp.initialize()
    #Get the output
    predict = mlp.apply(out)

    cost = CategoricalCrossEntropy().apply(y.flatten(), predict).copy(name='cost')
    error = MisclassificationRate().apply(y.flatten(), predict)

    #Little trick to plot the error rate in two different plots (We can't use two time the same data in the plot for a unknow reason)
    error_rate = error.copy(name='error_rate')
    error_rate2 = error.copy(name='error_rate2')

    ########### REGULARIZATION ##################
    cg = ComputationGraph([cost])
    weights = VariableFilter(roles=[WEIGHT])(cg.variables)
    biases = VariableFilter(roles=[BIAS])(cg.variables)
  # # l2_penalty_weights = T.sum([i*lambda_l2/len(weights) * (W ** 2).sum() for i,W in enumerate(weights)]) # Gradually increase penalty for layer
    l2_penalty = T.sum([lambda_l2 * (W ** 2).sum() for i,W in enumerate(weights+biases)]) # Gradually increase penalty for layer
  # # #l2_penalty_bias = T.sum([lambda_l2*(B **2).sum() for B in biases])
  # # #l2_penalty = l2_penalty_weights + l2_penalty_bias
    l2_penalty.name = 'l2_penalty'
    l1_penalty = T.sum([lambda_l1*T.abs_(z).sum() for z in weights+biases])
  #  l1_penalty_weights = T.sum([i*lambda_l1/len(weights) * T.abs_(W).sum() for i,W in enumerate(weights)]) # Gradually increase penalty for layer    
  #  l1_penalty_biases = T.sum([lambda_l1 * T.abs_(B).sum() for B in biases])
  #  l1_penalty = l1_penalty_biases + l1_penalty_weights
    l1_penalty.name = 'l1_penalty'
    costreg = cost + l2_penalty + l1_penalty
    costreg.name = 'costreg'
    
    ########### DEFINE THE ALGORITHM #############
  #  algorithm = GradientDescent(cost=cost, parameters=cg.parameters, step_rule=Momentum())
    algorithm = GradientDescent(cost=costreg, parameters=cg.parameters, step_rule=Adam())

    ########### GET THE DATA #####################
    istest = 'test' in config.keys()
    train_stream, valid_stream, test_stream = get_stream(batch_size,image_shape,test=istest)
    

    ########### INITIALIZING EXTENSIONS ##########
    checkpoint = Checkpoint('models/best_'+label+'.tar')
    checkpoint.add_condition(['after_epoch'],
                         predicate=OnLogRecord('valid_error_rate_best_so_far'))
    #Adding a live plot with the bokeh server
    plot = Plot(label,
        channels=[['train_error_rate', 'valid_error_rate'],
                  ['valid_cost', 'valid_error_rate2'],
                 # ['train_costreg','train_grad_norm']], #  
                 ['train_costreg','train_total_gradient_norm','train_l2_penalty','train_l1_penalty']],
                  server_url="http://hades.calculquebec.ca:5042")  
   
    grad_norm = aggregation.mean(algorithm.total_gradient_norm)
    grad_norm.name = 'grad_norm'

    extensions = [Timing(),
                  FinishAfter(after_n_epochs=num_epochs,
                  after_n_batches=num_batches),
                  DataStreamMonitoring([cost, error_rate, error_rate2], valid_stream, prefix="valid"),
                  TrainingDataMonitoring([costreg, error_rate, error_rate2,
                    grad_norm,l2_penalty,l1_penalty],
                     prefix="train", after_epoch=True),
                  plot,
                  ProgressBar(),
                  Printing(),
                  TrackTheBest('valid_error_rate',min), #Keep best
#.........這裏部分代碼省略.........
開發者ID:DjAntaki,項目名稱:IFT6266H16,代碼行數:101,代碼來源:main_cnn.py

示例15: main

def main(num_epochs=50, batch_normalized=True, alpha=0.1):
    """Run the example.

    Parameters
    ----------
    num_epochs : int, optional
        Number of epochs for which to train.

    batch_normalized : bool, optional
        Batch-normalize the training graph. Defaults to `True`.

    alpha : float, optional
        Weight to apply to a new sample when calculating running
        averages for population statistics (1 - alpha weight is
        given to the existing average).

    """
    if batch_normalized:
        # Add an extra keyword argument that only BatchNormalizedMLP takes,
        # in order to speed things up at the cost of a bit of extra memory.
        mlp_class = BatchNormalizedMLP
        extra_kwargs = {'conserve_memory': False}
    else:
        mlp_class = MLP
        extra_kwargs = {}
    mlp = mlp_class([Logistic(), Logistic(), Logistic(), Softmax()],
                    [2, 5, 5, 5, 3],
                    weights_init=IsotropicGaussian(0.2),
                    biases_init=Constant(0.), **extra_kwargs)
    mlp.initialize()

    # Generate a dataset with 3 spiral arms, using 8000 examples for
    # training and 2000 for testing.
    dataset = Spiral(num_examples=10000, classes=3,
                     sources=['features', 'label'],
                     noise=0.05)
    train_stream = DataStream(dataset,
                              iteration_scheme=ShuffledScheme(examples=8000,
                                                              batch_size=20))
    test_stream = DataStream(dataset,
                             iteration_scheme=SequentialScheme(
                                 examples=list(range(8000, 10000)),
                                 batch_size=2000))

    # Build a cost graph; this contains BatchNormalization bricks that will
    # by default run in inference mode.
    features = tensor.matrix('features')
    label = tensor.lvector('label')
    prediction = mlp.apply(features)
    cost = CategoricalCrossEntropy().apply(label, prediction)
    misclass = MisclassificationRate().apply(label, prediction)
    misclass.name = 'misclass'  # The default name for this is annoyingly long
    original_cg = ComputationGraph([cost, misclass])

    if batch_normalized:
        cg = apply_batch_normalization(original_cg)
        # Add updates for population parameters
        pop_updates = get_batch_normalization_updates(cg)
        extra_updates = [(p, m * alpha + p * (1 - alpha))
                         for p, m in pop_updates]
    else:
        cg = original_cg
        extra_updates = []

    algorithm = GradientDescent(step_rule=Adam(0.001),
                                cost=cg.outputs[0],
                                parameters=cg.parameters)
    algorithm.add_updates(extra_updates)

    main_loop = MainLoop(algorithm=algorithm,
                         data_stream=train_stream,
                         # Use the original cost and misclass variables so
                         # that we monitor the (original) inference-mode graph.
                         extensions=[DataStreamMonitoring([cost, misclass],
                                                          train_stream,
                                                          prefix='train'),
                                     DataStreamMonitoring([cost, misclass],
                                                          test_stream,
                                                          prefix='test'),
                                     Printing(),
                                     FinishAfter(after_n_epochs=num_epochs)])
    main_loop.run()
    return main_loop
開發者ID:Beronx86,項目名稱:blocks-examples,代碼行數:83,代碼來源:__init__.py


注:本文中的blocks.bricks.cost.MisclassificationRate類示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。