當前位置: 首頁>>代碼示例>>Python>>正文


Python bricks.NDimensionalSoftmax類代碼示例

本文整理匯總了Python中blocks.bricks.NDimensionalSoftmax的典型用法代碼示例。如果您正苦於以下問題:Python NDimensionalSoftmax類的具體用法?Python NDimensionalSoftmax怎麽用?Python NDimensionalSoftmax使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。


在下文中一共展示了NDimensionalSoftmax類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: ShallowFusionReadout

class ShallowFusionReadout(Readout):
    def __init__(self, lm_costs_name, lm_weight,
                 normalize_am_weights=False,
                 normalize_lm_weights=False,
                 normalize_tot_weights=True,
                 am_beta=1.0,
                 **kwargs):
        super(ShallowFusionReadout, self).__init__(**kwargs)
        self.lm_costs_name = lm_costs_name
        self.lm_weight = lm_weight
        self.normalize_am_weights = normalize_am_weights
        self.normalize_lm_weights = normalize_lm_weights
        self.normalize_tot_weights = normalize_tot_weights
        self.am_beta = am_beta
        self.softmax = NDimensionalSoftmax()
        self.children += [self.softmax]

    @application
    def readout(self, **kwargs):
        lm_costs = -kwargs.pop(self.lm_costs_name)
        if self.normalize_lm_weights:
            lm_costs = self.softmax.log_probabilities(
                lm_costs, extra_ndim=lm_costs.ndim - 2)
        am_pre_softmax = self.am_beta * super(ShallowFusionReadout, self).readout(**kwargs)
        if self.normalize_am_weights:
            am_pre_softmax = self.softmax.log_probabilities(
                am_pre_softmax, extra_ndim=am_pre_softmax.ndim - 2)
        x = am_pre_softmax + self.lm_weight * lm_costs
        if self.normalize_tot_weights:
            x = self.softmax.log_probabilities(x, extra_ndim=x.ndim - 2)
        return x
開發者ID:DingKe,項目名稱:attention-lvcsr,代碼行數:31,代碼來源:language_models.py

示例2: create_rnn

def create_rnn(hidden_dim, vocab_dim,mode="rnn"):
    # input
    x = tensor.imatrix('inchar')
    y = tensor.imatrix('outchar')

    # 
    W = LookupTable(
        name = "W1",
        #dim = hidden_dim*4,
        dim = hidden_dim,
        length = vocab_dim,
        weights_init = initialization.IsotropicGaussian(0.01),
        biases_init = initialization.Constant(0)
    )
    if mode == "lstm":
        # Long Short Term Memory
        H = LSTM(
            hidden_dim, 
            name = 'H',
            weights_init = initialization.IsotropicGaussian(0.01),
            biases_init = initialization.Constant(0.0)
        )
    else:
        # recurrent history weight
        H = SimpleRecurrent(
            name = "H",
            dim = hidden_dim,
            activation = Tanh(),
            weights_init = initialization.IsotropicGaussian(0.01)
        )
    # 
    S = Linear(
        name = "W2",
        input_dim = hidden_dim,
        output_dim = vocab_dim,
        weights_init = initialization.IsotropicGaussian(0.01),
        biases_init = initialization.Constant(0)
    )

    A = NDimensionalSoftmax(
        name = "softmax"
    )

    initLayers([W,H,S])
    activations = W.apply(x)
    hiddens = H.apply(activations)#[0]
    activations2 = S.apply(hiddens)
    y_hat = A.apply(activations2, extra_ndim=1)
    cost = A.categorical_cross_entropy(y, activations2, extra_ndim=1).mean()

    cg = ComputationGraph(cost)
    #print VariableFilter(roles=[WEIGHT])(cg.variables)
    #W1,H,W2 = VariableFilter(roles=[WEIGHT])(cg.variables)

    layers = (x, W, H, S, A, y)

    return  cg, layers, y_hat, cost
開發者ID:Rene90,項目名稱:dl4nlp,代碼行數:57,代碼來源:rnn_model.py

示例3: softmax_layer

def softmax_layer(h, y, frame_length, hidden_size):
    hidden_to_output = Linear(name="hidden_to_output", input_dim=hidden_size, output_dim=frame_length)
    initialize([hidden_to_output])
    linear_output = hidden_to_output.apply(h)
    linear_output.name = "linear_output"
    softmax = NDimensionalSoftmax()
    y_hat = softmax.apply(linear_output, extra_ndim=1)
    y_hat.name = "y_hat"
    cost = softmax.categorical_cross_entropy(y, linear_output, extra_ndim=1).mean()
    cost.name = "cost"
    return y_hat, cost
開發者ID:teganmaharaj,項目名稱:deeplearningclass,代碼行數:11,代碼來源:model.py

示例4: softmax_layer

def softmax_layer(h, y, vocab_size, hidden_size):
    hidden_to_output = Linear(name='hidden_to_output', input_dim=hidden_size,
                              output_dim=vocab_size)
    initialize([hidden_to_output])
    linear_output = hidden_to_output.apply(h)
    linear_output.name = 'linear_output'
    softmax = NDimensionalSoftmax()
    y_hat = softmax.apply(linear_output, extra_ndim=1)
    y_hat.name = 'y_hat'
    cost = softmax.categorical_cross_entropy(
        y, linear_output, extra_ndim=1).mean()
    cost.name = 'cost'
    return y_hat, cost
開發者ID:ixtel,項目名稱:blocks-char-rnn,代碼行數:13,代碼來源:model.py

示例5: SoftmaxEmitter

class SoftmaxEmitter(AbstractEmitter, Initializable, Random):
    """A softmax emitter for the case of integer outputs.

    Interprets readout elements as energies corresponding to their indices.

    Parameters
    ----------
    initial_output : int or a scalar :class:`~theano.Variable`
        The initial output.

    """
    def __init__(self, initial_output=0, **kwargs):
        super(SoftmaxEmitter, self).__init__(**kwargs)
        self.initial_output = initial_output
        self.softmax = NDimensionalSoftmax()
        self.children = [self.softmax]

    @application
    def probs(self, readouts):
        return self.softmax.apply(readouts, extra_ndim=readouts.ndim - 2)

    @application
    def emit(self, readouts):
        probs = self.probs(readouts)
        batch_size = probs.shape[0]
        pvals_flat = probs.reshape((batch_size, -1))
        generated = self.theano_rng.multinomial(pvals=pvals_flat)
        return generated.reshape(probs.shape).argmax(axis=-1)

    @application
    def cost(self, readouts, outputs):
        # WARNING: unfortunately this application method works
        # just fine when `readouts` and `outputs` have
        # different dimensions. Be careful!
        return self.softmax.categorical_cross_entropy(
            outputs, readouts, extra_ndim=readouts.ndim - 2)

    @application
    def costs(self, readouts):
        return -self.softmax.log_probabilities(
            readouts, extra_ndim=readouts.ndim - 2)

    @application
    def initial_outputs(self, batch_size):
        return self.initial_output * tensor.ones((batch_size,), dtype='int64')

    def get_dim(self, name):
        if name == 'outputs':
            return 0
        return super(SoftmaxEmitter, self).get_dim(name)
開發者ID:ZhangAustin,項目名稱:attention-lvcsr,代碼行數:50,代碼來源:sequence_generators.py

示例6: __init__

    def __init__(self, input1_size, input2_size, lookup1_dim=200, lookup2_dim=200, hidden_size=512):
        self.hidden_size = hidden_size
        self.input1_size = input1_size
        self.input2_size = input2_size
        self.lookup1_dim = lookup1_dim
        self.lookup2_dim = lookup2_dim

        x1 = tensor.lmatrix('durations')
        x2 = tensor.lmatrix('syllables')
        y = tensor.lmatrix('pitches')

        lookup1 = LookupTable(dim=self.lookup1_dim, length=self.input1_size, name='lookup1',
                              weights_init=initialization.Uniform(width=0.01),
                              biases_init=Constant(0))
        lookup1.initialize()
        lookup2 = LookupTable(dim=self.lookup2_dim, length=self.input2_size, name='lookup2',
                              weights_init=initialization.Uniform(width=0.01),
                              biases_init=Constant(0))
        lookup2.initialize()
        merge = Merge(['lookup1', 'lookup2'], [self.lookup1_dim, self.lookup2_dim], self.hidden_size,
                              weights_init=initialization.Uniform(width=0.01),
                              biases_init=Constant(0))
        merge.initialize()
        recurrent_block = LSTM(dim=self.hidden_size, activation=Tanh(),
                              weights_init=initialization.Uniform(width=0.01)) #RecurrentStack([LSTM(dim=self.hidden_size, activation=Tanh())] * 3)
        recurrent_block.initialize()
        linear = Linear(input_dim=self.hidden_size, output_dim=self.input1_size,
                              weights_init=initialization.Uniform(width=0.01),
                              biases_init=Constant(0))
        linear.initialize()
        softmax = NDimensionalSoftmax()

        l1 = lookup1.apply(x1)
        l2 = lookup2.apply(x2)
        m = merge.apply(l1, l2)
        h = recurrent_block.apply(m)
        a = linear.apply(h)

        y_hat = softmax.apply(a, extra_ndim=1)
        # ValueError: x must be 1-d or 2-d tensor of floats. Got TensorType(float64, 3D)

        self.Cost = softmax.categorical_cross_entropy(y, a, extra_ndim=1).mean()

        self.ComputationGraph = ComputationGraph(self.Cost)

        self.Model = Model(y_hat)
開發者ID:sharpfun,項目名稱:NeverEndingMusic,代碼行數:46,代碼來源:model.py

示例7: softmax_layer

    def softmax_layer(self, h, y):
        """
        Perform Softmax over the hidden state in order to
        predict the next word in the sequence and compute
        the loss.
        :param h The hidden state sequence
        :param y The target words
        """
        hidden_to_output = Linear(name='hidden_to_output', input_dim=self.hidden_size,
                                  output_dim=self.vocab_size)
        initialize(hidden_to_output, sqrt(6.0 / (self.hidden_size + self.vocab_size)))

        linear_output = hidden_to_output.apply(h)
        linear_output.name = 'linear_output'
        softmax = NDimensionalSoftmax(name="lm_softmax")
        y_hat = softmax.log_probabilities(linear_output, extra_ndim=1)
        y_hat.name = 'y_hat'

        cost = softmax.categorical_cross_entropy(y, linear_output, extra_ndim=1).mean()

        cost.name = 'cost'
        return y_hat, cost
開發者ID:rguthrie3,項目名稱:MorphologicalPriorsForWordEmbeddings,代碼行數:22,代碼來源:neural_lm_model.py

示例8: __init__

 def __init__(self, lm_costs_name, lm_weight,
              normalize_am_weights=False,
              normalize_lm_weights=False,
              normalize_tot_weights=True,
              am_beta=1.0,
              **kwargs):
     super(ShallowFusionReadout, self).__init__(**kwargs)
     self.lm_costs_name = lm_costs_name
     self.lm_weight = lm_weight
     self.normalize_am_weights = normalize_am_weights
     self.normalize_lm_weights = normalize_lm_weights
     self.normalize_tot_weights = normalize_tot_weights
     self.am_beta = am_beta
     self.softmax = NDimensionalSoftmax()
     self.children += [self.softmax]
開發者ID:DingKe,項目名稱:attention-lvcsr,代碼行數:15,代碼來源:language_models.py

示例9: GMMMLP

class GMMMLP(Initializable):
    """An mlp brick that branchs out to output
    sigma and mu for GMM
    Parameters
    ----------
    mlp: MLP brick
        the main mlp to wrap around.
    dim:
        output dim
    """
    def __init__(self, mlp, dim, k, const=1e-5, **kwargs):
        super(GMMMLP, self).__init__(**kwargs)

        self.dim = dim
        self.const = const
        self.k = k
        input_dim = mlp.output_dim
        self.mu = MLP(activations=[Identity()],
                      dims=[input_dim, dim],
                      name=self.name + "_mu")
        self.sigma = MLP(activations=[SoftPlus()],
                         dims=[input_dim, dim],
                         name=self.name + "_sigma")

        self.coeff = MLP(activations=[Identity()],
                         dims=[input_dim, k],
                         name=self.name + "_coeff")


        self.coeff2 = NDimensionalSoftmax()
        self.mlp = mlp
        self.children = [self.mlp, self.mu, 
                         self.sigma, self.coeff, self.coeff2]
        #self.children.extend(self.mlp.children)

    @application
    def apply(self, inputs):
        state = self.mlp.apply(inputs)
        mu = self.mu.apply(state)
        sigma = self.sigma.apply(state)
        coeff = self.coeff2.apply(self.coeff.apply(state),
            extra_ndim=state.ndim - 2) + self.const
        return mu, sigma, coeff

    @property
    def output_dim(self):
        return self.dim
開發者ID:donghyunlee,項目名稱:play,代碼行數:47,代碼來源:custom.py

示例10: __init__

    def __init__(self, mlp, dim, k, const=1e-5, **kwargs):
        super(GMMMLP, self).__init__(**kwargs)

        self.dim = dim
        self.const = const
        self.k = k
        input_dim = mlp.output_dim
        self.mu = MLP(activations=[Identity()],
                      dims=[input_dim, dim],
                      name=self.name + "_mu")
        self.sigma = MLP(activations=[SoftPlus()],
                         dims=[input_dim, dim],
                         name=self.name + "_sigma")

        self.coeff = MLP(activations=[Identity()],
                         dims=[input_dim, k],
                         name=self.name + "_coeff")

        self.coeff2 = NDimensionalSoftmax()
        self.mlp = mlp
        self.children = [self.mlp, self.mu,
                         self.sigma, self.coeff, self.coeff2]
開發者ID:anirudh9119,項目名稱:play,代碼行數:22,代碼來源:custom.py

示例11: FRNNEmitter

class FRNNEmitter(AbstractEmitter, Initializable, Random):
    """An RNN emitter for the case of real outputs.
    Parameters
    ----------
    """

    def __init__(self, mlp, target_size, frame_size, k, frnn_hidden_size, frnn_step_size, const=1e-5, **kwargs):

        super(FRNNEmitter, self).__init__(**kwargs)

        self.mlp = mlp
        self.target_size = target_size
        self.frame_size = frame_size
        self.k = k
        self.frnn_hidden_size = frnn_hidden_size
        self.const = const
        self.input_dim = self.mlp.output_dim

        self.frnn_step_size = frnn_step_size

        # adding a step if the division is not exact.
        self.number_of_steps = frame_size // frnn_step_size
        self.last_steps = frame_size % frnn_step_size
        if self.last_steps != 0:
            self.number_of_steps += 1

        self.mu = MLP(activations=[Identity()], dims=[frnn_hidden_size, k * frnn_step_size], name=self.name + "_mu")
        self.sigma = MLP(
            activations=[SoftPlus()], dims=[frnn_hidden_size, k * frnn_step_size], name=self.name + "_sigma"
        )

        self.coeff = MLP(activations=[Identity()], dims=[frnn_hidden_size, k], name=self.name + "_coeff")

        self.coeff2 = NDimensionalSoftmax()

        self.frnn_initial_state = Linear(
            input_dim=self.input_dim, output_dim=frnn_hidden_size, name="frnn_initial_state"
        )

        # self.frnn_hidden = Linear(
        #    input_dim=frnn_hidden_size,
        #    output_dim=frnn_hidden_size,
        #    activation=Tanh(),
        #    name="frnn_hidden")

        self.frnn_activation = Tanh(name="frnn_activation")

        self.frnn_linear_transition_state = Linear(
            input_dim=frnn_hidden_size, output_dim=frnn_hidden_size, name="frnn_linear_transition_state"
        )

        self.frnn_linear_transition_input = Linear(
            input_dim=self.frnn_step_size, output_dim=frnn_hidden_size, name="frnn_linear_transition_input"
        )

        # self.frnn_linear_transition_output = Linear (
        #    input_dim = frnn_hidden_size,
        #    output_dim = self.rnn_hidden_dim,
        #    name="frnn_linear_transition_output")

        self.children = [
            self.mlp,
            self.mu,
            self.sigma,
            self.coeff,
            self.coeff2,
            self.frnn_initial_state,
            self.frnn_activation,
            self.frnn_linear_transition_state,
            self.frnn_linear_transition_input,
        ]

    @application
    def emit(self, readouts):
        """
        keep_parameters is True if mu,sigma,coeffs must be stacked and returned
        if false, only the result is given, the others will be empty list.

        """
        # initial state
        state = self.frnn_initial_state.apply(self.mlp.apply(readouts))

        results = []

        for i in range(self.number_of_steps):
            last_iteration = i == self.number_of_steps - 1

            # First generating distribution parameters and sampling.
            mu = self.mu.apply(state)
            sigma = self.sigma.apply(state) + self.const
            coeff = self.coeff2.apply(self.coeff.apply(state), extra_ndim=state.ndim - 2) + self.const

            shape_result = coeff.shape
            shape_result = tensor.set_subtensor(shape_result[-1], self.frnn_step_size)
            ndim_result = coeff.ndim

            mu = mu.reshape((-1, self.frnn_step_size, self.k))
            sigma = sigma.reshape((-1, self.frnn_step_size, self.k))
            coeff = coeff.reshape((-1, self.k))

#.........這裏部分代碼省略.........
開發者ID:TiSU32,項目名稱:ift6266h16,代碼行數:101,代碼來源:frnn_model.py

示例12: __init__

 def __init__(self, initial_output=0, **kwargs):
     super(SoftmaxEmitter, self).__init__(**kwargs)
     self.initial_output = initial_output
     self.softmax = NDimensionalSoftmax()
     self.children = [self.softmax]
開發者ID:ZhangAustin,項目名稱:attention-lvcsr,代碼行數:5,代碼來源:sequence_generators.py

示例13: __init__

    def __init__(self, config_dict, init_type="xavier", **kwargs):

        super(CharRNNModel, self).__init__(**kwargs)

        self.batch_size = config_dict["batch_size"]
        self.num_subwords = config_dict["num_subwords"]
        self.num_words = config_dict["num_words"]
        self.subword_embedding_size = config_dict["subword_embedding_size"]
        self.input_vocab_size = config_dict["input_vocab_size"]
        self.output_vocab_size = config_dict["output_vocab_size"]
        self.subword_RNN_hidden_state_size = config_dict["subword_RNN_hidden_state_size"]
        self.table_width = config_dict["table_width"]
        self.max_out_dim = config_dict["max_out_dim"]
        self.max_out_K = config_dict["max_out_K"]

        self.lookup = LookupTable(length=self.input_vocab_size, dim=self.subword_embedding_size, name="input_lookup")
        self.lookup.weights_init = Uniform(width=self.table_width)
        self.lookup.biases_init = Constant(0)

        if init_type == "xavier":
            linear_init = XavierInitializationOriginal(self.subword_embedding_size, self.subword_RNN_hidden_state_size)
            lstm_init = XavierInitializationOriginal(self.subword_embedding_size, self.subword_RNN_hidden_state_size)
        else:  # default is gaussian
            linear_init = IsotropicGaussian()
            lstm_init = IsotropicGaussian()

        # The `inputs` are then split in this order: Input gates, forget gates, cells and output gates
        self.linear_forward = Linear(
            input_dim=self.subword_embedding_size,
            output_dim=self.subword_RNN_hidden_state_size * 4,
            name="linear_forward",
            weights_init=linear_init,
            biases_init=Constant(0.0),
        )

        self.language_model = LSTM(
            dim=self.subword_RNN_hidden_state_size,
            activation=Tanh(),
            name="language_model_RNN",
            weights_init=lstm_init,
            biases_init=Constant(0.0),
        )

        self.max_out = LinearMaxout(
            self.subword_RNN_hidden_state_size,
            self.max_out_dim,
            self.max_out_K,
            name="max_out",
            weights_init=IsotropicGaussian(),
            biases_init=Constant(0.0),
        )

        self.softmax_linear = Linear(
            self.max_out_dim,
            self.output_vocab_size,
            name="soft_max_linear",
            weights_init=IsotropicGaussian(),
            biases_init=Constant(0.0),
        )

        self.softmax = NDimensionalSoftmax()

        self.children = [
            self.lookup,
            self.linear_forward,
            self.language_model,
            self.max_out,
            self.softmax_linear,
            self.softmax,
        ]
開發者ID:arvieFrydenlund,項目名稱:Neural_Language_Models,代碼行數:70,代碼來源:Char_RNN.py

示例14: SimpleRecurrent

rnn = SimpleRecurrent(
    name='hidden',
    dim=hidden_layer_dim,
    activation=Tanh(),
    weights_init=initialization.Uniform(width=0.01))
rnn.initialize()

linear_output = Linear(
    name='linear_output',
    input_dim=hidden_layer_dim,
    output_dim=charset_size,
    weights_init=initialization.Uniform(width=0.01),
    biases_init=Constant(0))
linear_output.initialize()

softmax = NDimensionalSoftmax(name='ndim_softmax')

activation_input = lookup_input.apply(x)
hidden = rnn.apply(linear_input.apply(activation_input))
activation_output = linear_output.apply(hidden)
y_est = softmax.apply(activation_output, extra_ndim=1)

cost = softmax.categorical_cross_entropy(y, activation_output, extra_ndim=1).mean()


from blocks.graph import ComputationGraph
from blocks.algorithms import GradientDescent, Adam

cg = ComputationGraph([cost])

step_rules = [RMSProp(learning_rate=0.002, decay_rate=0.95), StepClipping(1.0)]
開發者ID:sharpfun,項目名稱:NeverEndingMusic,代碼行數:31,代碼來源:run.py

示例15: SimpleSpeechRecognizer

# ******************* Model *******************
recognizer = SimpleSpeechRecognizer(transition=transition,
                dims_transition=conf.dims_transition,
                num_features=num_features, num_classes=num_classes)

#recognizer = SpeechRecognizer(
#    num_features=num_features, dims_bottom=[],
#    dims_bidir=conf.dims_transition, dims_top=[num_classes],
#    bidir_trans=GatedRecurrent, bottom_activation=None)


# ******************* output *******************
y_hat = recognizer.apply(x,x_m)
y_hat.name = 'outputs'
y_hat_softmax = NDimensionalSoftmax().apply(y_hat, extra_ndim = y_hat.ndim - 2)
y_hat_softmax.name = 'outputs_softmax'

# there is a cost function for monitoring and for training, because one is more stable to compute
# gradients and seems also to be more memory efficient, but does not compute the true cost.
if conf.task=='CTC':
    cost_train = ctc.pseudo_cost(y, y_hat, y_m, x_m).mean()
    cost_train.name = "cost_train"
    
    cost_monitor = ctc.cost(y, y_hat_softmax, y_m, x_m).mean()
    cost_monitor.name = "cost_monitor"
elif conf.task=='framewise':
    cost_train = categorical_crossentropy_batch().apply(y_hat_softmax, y, x_m)
    cost_train.name='cost'
    cost_monitor = cost_train
else:
開發者ID:Richi91,項目名稱:SpeechRecognition,代碼行數:30,代碼來源:run.py


注:本文中的blocks.bricks.NDimensionalSoftmax類示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。