本文整理匯總了Python中basic.C.cos方法的典型用法代碼示例。如果您正苦於以下問題:Python C.cos方法的具體用法?Python C.cos怎麽用?Python C.cos使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類basic.C
的用法示例。
在下文中一共展示了C.cos方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _eval_expand_complex
# 需要導入模塊: from basic import C [as 別名]
# 或者: from basic.C import cos [as 別名]
def _eval_expand_complex(self, *args):
if self.exp.is_Integer:
exp = self.exp
re, im = self.base.as_real_imag()
if exp >= 0:
base = re + S.ImaginaryUnit * im
else:
mag = re ** 2 + im ** 2
base = re / mag - S.ImaginaryUnit * (im / mag)
exp = -exp
return (base ** exp).expand()
elif self.exp.is_Rational:
# NOTE: This is not totally correct since for x**(p/q) with
# x being imaginary there are actually q roots, but
# only a single one is returned from here.
re, im = self.base.as_real_imag()
r = (re ** 2 + im ** 2) ** S.Half
t = C.atan2(im, re)
rp, tp = r ** self.exp, t * self.exp
return rp * C.cos(tp) + rp * C.sin(tp) * S.ImaginaryUnit
else:
return C.re(self) + S.ImaginaryUnit * C.im(self)
示例2: as_real_imag
# 需要導入模塊: from basic import C [as 別名]
# 或者: from basic.C import cos [as 別名]
def as_real_imag(self, deep=True, **hints):
from sympy.core.symbol import symbols
from sympy.polys.polytools import poly
from sympy.core.function import expand_multinomial
if self.exp.is_Integer:
exp = self.exp
re, im = self.base.as_real_imag(deep=deep)
a, b = symbols('a, b', dummy=True)
if exp >= 0:
if re.is_Number and im.is_Number:
# We can be more efficient in this case
expr = expand_multinomial(self.base**exp)
return expr.as_real_imag()
expr = poly((a + b)**exp) # a = re, b = im; expr = (a + b*I)**exp
else:
mag = re**2 + im**2
re, im = re/mag, -im/mag
if re.is_Number and im.is_Number:
# We can be more efficient in this case
expr = expand_multinomial((re + im*S.ImaginaryUnit)**-exp)
return expr.as_real_imag()
expr = poly((a + b)**-exp)
# Terms with even b powers will be real
r = [i for i in expr.terms() if not i[0][1] % 2]
re_part = Add(*[cc*a**aa*b**bb for (aa, bb), cc in r])
# Terms odd b powers will be imaginary
r = [i for i in expr.terms() if i[0][1] % 4 == 1]
im_part1 = Add(*[cc*a**aa*b**bb for (aa, bb), cc in r])
r = [i for i in expr.terms() if i[0][1] % 4 == 3]
im_part3 = Add(*[cc*a**a*b**bb for (aa, bb), cc in r])
return (re_part.subs({a: re, b: S.ImaginaryUnit*im}),
im_part1.subs({a: re, b: im}) + im_part3.subs({a: re, b: -im}))
elif self.exp.is_Rational:
# NOTE: This is not totally correct since for x**(p/q) with
# x being imaginary there are actually q roots, but
# only a single one is returned from here.
re, im = self.base.as_real_imag(deep=deep)
r = (re**2 + im**2)**S.Half
t = C.atan2(im, re)
rp, tp = r**self.exp, t*self.exp
return (rp*C.cos(tp), rp*C.sin(tp))
else:
if deep:
hints['complex'] = False
return (C.re(self.expand(deep, complex=False)),
C.im(self. expand(deep, **hints)))
else:
return (C.re(self), C.im(self))
示例3: do_integral
# 需要導入模塊: from basic import C [as 別名]
# 或者: from basic.C import cos [as 別名]
def do_integral(expr, prec, options):
func = expr.args[0]
x, (xlow, xhigh) = expr.args[1][0]
orig = mp.prec
oldmaxprec = options.get('maxprec', DEFAULT_MAXPREC)
options['maxprec'] = min(oldmaxprec, 2*prec)
try:
mp.prec = prec+5
xlow = as_mpmath(xlow, prec+15, options)
xhigh = as_mpmath(xhigh, prec+15, options)
# Integration is like summation, and we can phone home from
# the integrand function to update accuracy summation style
# Note that this accuracy is inaccurate, since it fails
# to account for the variable quadrature weights,
# but it is better than nothing
have_part = [False, False]
max_real_term = [MINUS_INF]
max_imag_term = [MINUS_INF]
def f(t):
re, im, re_acc, im_acc = evalf(func, mp.prec, {'subs':{x:t}})
have_part[0] = re or have_part[0]
have_part[1] = im or have_part[1]
max_real_term[0] = max(max_real_term[0], fastlog(re))
max_imag_term[0] = max(max_imag_term[0], fastlog(im))
if im:
return mpc(re or fzero, im)
return mpf(re or fzero)
if options.get('quad') == 'osc':
A = C.Wild('A', exclude=[x])
B = C.Wild('B', exclude=[x])
D = C.Wild('D')
m = func.match(C.cos(A*x+B)*D)
if not m:
m = func.match(C.sin(A*x+B)*D)
if not m:
raise ValueError("An integrand of the form sin(A*x+B)*f(x) "
"or cos(A*x+B)*f(x) is required for oscillatory quadrature")
period = as_mpmath(2*S.Pi/m[A], prec+15, options)
result = quadosc(f, [xlow, xhigh], period=period)
# XXX: quadosc does not do error detection yet
quadrature_error = MINUS_INF
else:
result, quadrature_error = quadts(f, [xlow, xhigh], error=1)
quadrature_error = fastlog(quadrature_error._mpf_)
finally:
options['maxprec'] = oldmaxprec
mp.prec = orig
if have_part[0]:
re = result.real._mpf_
if re == fzero:
re = mpf_shift(fone, min(-prec,-max_real_term[0],-quadrature_error))
re_acc = -1
else:
re_acc = -max(max_real_term[0]-fastlog(re)-prec, quadrature_error)
else:
re, re_acc = None, None
if have_part[1]:
im = result.imag._mpf_
if im == fzero:
im = mpf_shift(fone, min(-prec,-max_imag_term[0],-quadrature_error))
im_acc = -1
else:
im_acc = -max(max_imag_term[0]-fastlog(im)-prec, quadrature_error)
else:
im, im_acc = None, None
result = re, im, re_acc, im_acc
return result