當前位置: 首頁>>代碼示例>>Python>>正文


Python Bag.score方法代碼示例

本文整理匯總了Python中bag.Bag.score方法的典型用法代碼示例。如果您正苦於以下問題:Python Bag.score方法的具體用法?Python Bag.score怎麽用?Python Bag.score使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在bag.Bag的用法示例。


在下文中一共展示了Bag.score方法的1個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: run_algorithm

# 需要導入模塊: from bag import Bag [as 別名]
# 或者: from bag.Bag import score [as 別名]
    def run_algorithm(self, num_solution_before_stop=100000, time_out=1000000):
        """
        This is where we implement our logic and algorithms

        Useful Parameters:
        self.P -- max weight we can carry
        self.M -- max purchasing power in dollars
        self.N -- total number of avaliable items
        self.C -- total number of constraints
        self.items -- all items avaliable for choice
        self.constraints -- a Constraint class with constraints
        """

        # STEP: Create a hashmap from class number to its items
        item_map = dict()
        for item in self.items:
            if item.classNumber not in item_map:
                item_map[item.classNumber] = set()
            item_map[item.classNumber].add(item)

        # STEP: Calculate the total weight, cost, value, and profit of each class
        def get_class_stats(items):
            total_weight = 0
            total_cost = 0
            total_value = 0
            total_profit = 0
            for item in items:
                total_weight += item.weight
                total_cost += item.cost
                total_value += item.value
                total_profit += item.profit
            return (total_weight, total_cost, total_value, total_profit)

        class_stats = dict() # Format: key: class -> value: (weight, cost, value, profit)
        for classNumber in item_map.keys():
            class_stats[classNumber] = get_class_stats(item_map[classNumber])

        # STEP: Create a BAG instance
        bag = Bag(self.P, self.M, self.constraints)

        # STEP: PriorityQueues of class's values

        fn_extract_profit_per_weight_ratio = lambda x: x.profit_per_weight_ratio()
        
        def fn_extractclass_ratio(x):
            weight, _, _, profit = class_stats[x]
            if weight == 0:
                ratio = float("inf")
            else:
                ratio = profit / weight
            return ratio


        class_queue = PriorityQueue(lowest_priority=False) # based on class's item profit_per_weight_ratio
        for classNumber in item_map.keys():
            class_queue.push(classNumber, fn_extractclass_ratio(classNumber))

        def add_to_queue(items, fn_extract_priority, queue):
            for item in items:
                priority_value = fn_extract_priority(item)
                queue.push(item, -priority_value)
            return queue

        def get_queue_of_items(items, fn_extract_priority):
            queue = PriorityQueue(lowest_priority=False)
            return add_to_queue(items, fn_extract_priority, queue)


        # STEP: pick from the bag with highest ratio
        solutions_found = dict()
        num_solution_found = 0
        iteration = 0

        class_not_used_due_to_conflict = Queue()

        add_back_conflicts = True

        while num_solution_found <= num_solution_before_stop and iteration <= time_out:
            while not class_queue.isEmpty() and iteration <= time_out:
                iteration += 1
                if iteration % (time_out / 1000) == 0:
                    print("iteration {0} -- rate: {1:.2f} %".format(iteration, iteration / time_out * 100), end="\r")
                if not class_not_used_due_to_conflict.isEmpty():
                    class_to_use  = class_not_used_due_to_conflict.pop()
                    add_back_conflicts = not add_back_conflicts
                else: 
                    class_to_use = class_queue.pop()
                    add_back_conflicts = not add_back_conflicts
                if bag.can_take(class_to_use):
                    items_queue = get_queue_of_items(item_map[class_to_use], \
                                                fn_extract_profit_per_weight_ratio)
                    item = items_queue.pop()
                    while bag.take(item):
                        if not items_queue.isEmpty():
                            item = items_queue.pop()
                        else:
                            break
                    num_solution_found += 1
                    solutions_found[bag.score()] =  bag.items()
                    print("solution {0} found".format(num_solution_found))
#.........這裏部分代碼省略.........
開發者ID:Michael-Tu,項目名稱:ClassWork,代碼行數:103,代碼來源:solver.py


注:本文中的bag.Bag.score方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。