當前位置: 首頁>>代碼示例>>Python>>正文


Python NumpyInterface.NP類代碼示例

本文整理匯總了Python中augustus.core.NumpyInterface.NP的典型用法代碼示例。如果您正苦於以下問題:Python NP類的具體用法?Python NP怎麽用?Python NP使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。


在下文中一共展示了NP類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: applyInvalidValueTreatment

    def applyInvalidValueTreatment(mask, invalidValueTreatment, overwrite=False):
        """Replace INVALID values with MISSING if invalidValueTreatment is "asMissing".

        This function does not modify the original data (unless
        C{overwrite} is True), but it returns a substitute.  Example
        use::

            mask = dataColumn.mask
            mask = FieldCastMethods.applyInvalidValueTreatment(mask, pmml.get("invalidValueTreatment"))
            return DataColumn(dataColumn.fieldType, dataColumn.data, mask)

        It can also be used in conjunction with other FieldCastMethods.

        @type mask: 1d Numpy array of dtype defs.maskType, or None
        @param mask: The mask.
        @type invalidValueTreatment: string
        @param invalidValueTreatment: One of "returnInvalid", "asIs", "asMissing"; only "asMissing" has an effect.
        @type overwrite: bool
        @param overwrite: If True, temporarily unlike and overwrite the original mask.
        @rtype: 1d Numpy array of dtype defs.maskType
        @return: The new mask.
        """

        if mask is None: return mask

        if invalidValueTreatment == "asMissing":
            if overwrite:
                mask.setflags(write=True)
            else:
                mask = NP("copy", mask)
                mask.setflags(write=True)
            mask[NP(mask == defs.INVALID)] = defs.MISSING

        return mask
開發者ID:Huskyeder,項目名稱:augustus,代碼行數:34,代碼來源:FieldCastMethods.py

示例2: mapper

    def mapper(self, dataTable):
        dataTable = dataTable.subTable()  # ensure that the results of this calculation do not get propagated

        self.metadata["ClusteringModel"].calculate(dataTable, performanceTable=self.performanceTable)

        data = dataTable.score.data
        mask = dataTable.score.mask
        stringToValue = dataTable.score.fieldType.stringToValue
        for index, cluster in enumerate(self.clusters):
            clusterName = cluster.get("id", "%d" % (index + 1))
            value = stringToValue(clusterName)

            selection = NP(data == value)
            if mask is not None:
                NP("logical_and", selection, NP(mask == defs.VALID), selection)

            denominator = selection.sum()

            numer = dict((fieldName, 0.0) for fieldName in self.fieldNames)
            denom = dict((fieldName, 0.0) for fieldName in self.fieldNames)

            for fieldName in self.fieldNames:
                numer[fieldName] += dataTable.fields[fieldName].data[selection].sum()
                denom[fieldName] += denominator

            self.emit(clusterName, {"numer": numer, "denom": denom})
開發者ID:Huskyeder,項目名稱:augustus,代碼行數:26,代碼來源:MapReduceKMeans.py

示例3: _toDataColumn_dateTime

    def _toDataColumn_dateTime(self, data, mask):
        data, mask = self._checkNumpy(data, mask, tryToCast=False)
        data, mask = self._checkNonNumpy(data, mask)

        data2 = NP("empty", len(data), dtype=self.dtype)
        mask2 = NP("zeros", len(data), dtype=defs.maskType)

        for i, x in enumerate(data):
            if (mask is not None and mask[i]) or (isinstance(x, float) and math.isnan(x)) or (isinstance(x, basestring) and x.upper() == "NAN"):
                data2[i] = defs.PADDING
                mask2[i] = defs.MISSING
            else:
                try:
                    data2[i] = self.stringToValue(x)
                except (ValueError, TypeError):
                    data2[i] = defs.PADDING
                    mask2[i] = defs.INVALID

        if not mask2.any():
            data, mask = data2, None
        else:
            data, mask = data2, mask2

        data, mask = self._checkValues(data, mask)
        data, mask = self._checkIntervals(data, mask)
        return DataColumn(self, data, mask)
開發者ID:Huskyeder,項目名稱:augustus,代碼行數:26,代碼來源:FieldType.py

示例4: generateSamples

    def generateSamples(self, low, high):
        """Used by C{prepare} to generate an array of samples.

        @type low: number
        @param low: Minimum value to sample.
        @type high: number
        @param high: Maximum value to sample.
        @rtype: 1d Numpy array
        @return: An array of uniform, random, or adaptive samples of an interval.
        """

        numSamples = self.get("numSamples", defaultFromXsd=True, convertType=True)
        samplingMethod = self.get("samplingMethod", defaultFromXsd=True)

        if samplingMethod == "uniform":
            samples = NP("linspace", low, high, numSamples, endpoint=True)

        elif samplingMethod == "random":
            samples = NP(NP(NP(NP.random.rand(numSamples)) * (high - low)) + low)
            samples.sort()

        else:
            raise NotImplementedError("TODO: add 'adaptive'")

        return samples
開發者ID:Huskyeder,項目名稱:augustus,代碼行數:25,代碼來源:PlotCurve.py

示例5: cusum

    def cusum(self, testDistributions, fieldName, dataColumn, state, performanceTable):
        """Calculate the score of a CUSUM TestStatistic.

        The CUSUM cumulative sum is a stateful calculation: each row
        depends on the result of the previous row.  To continue
        calculations through multiple calls to C{calc} or
        C{calculate}, pass a DataTableState object and give the
        BaselineModel a C{stateId} attribute.  The C{stateId} is not
        valid in strict PMML, but it can be inserted after validation
        or used in custom-ODG models (C{from augustus.odg import *}).

        @type testDistributions: PmmlBinding
        @param testDistributions: The <TestDistributions> element.
        @type fieldName: string
        @param fieldName: The field name (for error messages).
        @type dataColumn: DataColumn
        @param dataColumn: The field.
        @type state: DataTableState
        @param state: The persistent state object, which is used to initialize the start state and save the end state of the cumulative sum.
        @type performanceTable: PerformanceTable or None
        @param performanceTable: A PerformanceTable for measuring the efficiency of the calculation.
        @rtype: dict
        @return: A dictionary mapping PMML "feature" strings to DataColumns; CUSUM only defines the None key ("predictedValue").
        """

        baseline = testDistributions.xpath("pmml:Baseline/pmml:GaussianDistribution | pmml:Baseline/pmml:PoissonDistribution")
        alternate = testDistributions.xpath("pmml:Alternate/pmml:GaussianDistribution | pmml:Alternate/pmml:PoissonDistribution")

        if len(baseline) == 0 or len(alternate) == 0:
            raise defs.PmmlValidationError("BaselineModel CUSUM requires a Baseline and an Alternate that are either GaussianDistribution or PoissonDistribution")

        ratios = alternate[0].logpdf(dataColumn.data) - baseline[0].logpdf(dataColumn.data)
        if dataColumn.mask is None:
            good = NP("ones", len(dataColumn), dtype=NP.dtype(bool))
        else:
            good = NP(dataColumn.mask == defs.VALID)

        stateId = self.get("stateId")
        last = None
        if stateId is not None:
            last = state.get(stateId)
        if last is None:
            last = 0.0

        resetValue = testDistributions.get("resetValue", defaultFromXsd=True, convertType=True)

        output = NP("empty", len(dataColumn), dtype=NP.dtype(float))

        performanceTable.begin("fill CUSUM")
        for index in xrange(len(dataColumn)):
            if good[index]:
                last = max(resetValue, last + ratios[index])
            output[index] = last
        performanceTable.end("fill CUSUM")

        if stateId is not None:
            state[stateId] = last

        return {None: DataColumn(self.scoreType, output, None)}
開發者ID:Huskyeder,項目名稱:augustus,代碼行數:59,代碼來源:BaselineModel.py

示例6: functionMax

    def functionMax(self, dataColumn, whereMask, groupSelection, getstate, setstate):
        """Finds the maximum of rows in a DataColumn, possibly with an SQL where mask and groupField.

        @type dataColumn: DataColumn
        @param dataColumn: The input data column.
        @type whereMask: 1d Numpy array of bool, or None
        @param whereMask: The result of the SQL where selection.
        @type groupSelection: 1d Numpy array of bool, or None.
        @param groupSelection: Rows corresponding to a particular value of the groupField.
        @type getstate: callable function
        @param getstate: Retrieve staring values from the DataTableState.
        @type setstate: callable function
        @param setstate: Store ending values to the DataTableState.
        @rtype: DataColumn
        @return: A column of maximized rows.
        """

        fieldType = dataColumn.fieldType

        if fieldType.optype not in ("continuous", "ordinal"):
            raise defs.PmmlValidationError("Aggregate function \"min\" requires a continuous or ordinal input field")

        if dataColumn.mask is None:
            selection = NP("ones", len(dataColumn), dtype=NP.dtype(bool))
        else:
            selection = NP(dataColumn.mask == defs.VALID)

        if whereMask is not None:
            NP("logical_and", selection, whereMask, selection)

        if groupSelection is not None:
            NP("logical_and", selection, groupSelection, selection)

        maximum = None
        if getstate is not None:
            startingState = getstate()
            if startingState is not None:
                maximum = startingState

        data = NP("empty", len(dataColumn), dtype=fieldType.dtype)
        mask = NP("zeros", len(dataColumn), dtype=defs.maskType)

        for i, x in enumerate(dataColumn.data):
            if selection[i]:
                if maximum is None or x > maximum:
                    maximum = x
            if maximum is None:
                mask[i] = defs.INVALID
            else:
                data[i] = maximum

        if not mask.any():
            mask = None

        if setstate is not None:
            setstate(maximum)

        return DataColumn(fieldType, data, mask)
開發者ID:Huskyeder,項目名稱:augustus,代碼行數:58,代碼來源:Aggregate.py

示例7: functionAverage

    def functionAverage(self, dataColumn, whereMask, groupSelection, getstate, setstate):
        """Averages rows in a DataColumn, possibly with an SQL where mask and groupField.

        @type dataColumn: DataColumn
        @param dataColumn: The input data column.
        @type whereMask: 1d Numpy array of bool, or None
        @param whereMask: The result of the SQL where selection.
        @type groupSelection: 1d Numpy array of bool, or None.
        @param groupSelection: Rows corresponding to a particular value of the groupField.
        @type getstate: callable function
        @param getstate: Retrieve staring values from the DataTableState.
        @type setstate: callable function
        @param setstate: Store ending values to the DataTableState.
        @rtype: DataColumn
        @return: A column of averaged rows.
        """

        fieldType = FakeFieldType("double", "continuous")

        if dataColumn.fieldType.dataType not in ("integer", "float", "double"):
            raise defs.PmmlValidationError("Aggregate function \"average\" requires a numeric input field: \"integer\", \"float\", \"double\"")

        denominator = NP("ones", len(dataColumn), dtype=fieldType.dtype)
        if dataColumn.mask is not None:
            NP("logical_and", denominator, NP(dataColumn.mask == defs.VALID), denominator)

        if whereMask is not None:
            NP("logical_and", denominator, whereMask, denominator)

        if groupSelection is not None:
            NP("logical_and", denominator, groupSelection, denominator)

        numerator = NP("multiply", denominator, dataColumn.data)

        if getstate is not None and len(dataColumn) > 0:
            startingState  = getstate()
            if startingState is not None:
                startingNumerator, startingDenominator = startingState
                numerator[0] += startingNumerator
                denominator[0] += startingDenominator

        numerator = NP("cumsum", numerator)
        denominator = NP("cumsum", denominator)

        data = NP(numerator / denominator)
        mask = NP(NP("logical_not", NP("isfinite", data)) * defs.INVALID)
        if not mask.any():
            mask = None

        if setstate is not None and len(dataColumn) > 0:
            setstate((numerator[-1], denominator[-1]))

        return DataColumn(fieldType, data, mask)
開發者ID:Huskyeder,項目名稱:augustus,代碼行數:53,代碼來源:Aggregate.py

示例8: _checkValues

    def _checkValues(self, data, mask):
        values = self.values
        if len(values) == 0:
            return data, mask

        if mask is None:
            missing = NP("zeros", len(data), dtype=NP.dtype(bool))
            invalid = NP("zeros", len(data), dtype=NP.dtype(bool))
        else:
            missing = NP(mask == defs.MISSING)
            invalid = NP(mask == defs.INVALID)
        valid = NP("zeros", len(data), dtype=NP.dtype(bool))

        numberOfValidSpecified = 0
        for value in values:
            v = value.get("value")
            displayValue = value.get("displayValue")
            if displayValue is not None:
                self._displayValue[v] = displayValue

            prop = value.get("property", "valid")
            try:
                v2 = self.stringToValue(v)
            except ValueError:
                raise defs.PmmlValidationError("Improper value in Value specification: \"%s\"" % v)

            if prop == "valid":
                NP("logical_or", valid, NP(data == v2), valid)
                numberOfValidSpecified += 1
            elif prop == "missing":
                NP("logical_or", missing, NP(data == v2), missing)
            elif prop == "invalid":
                NP("logical_or", invalid, NP(data == v2), invalid)

        if numberOfValidSpecified > 0:
            # guilty until proven innocent
            NP("logical_and", valid, NP("logical_not", missing), valid)
            if valid.all():
                return data, None
            mask = NP(NP("ones", len(data), dtype=defs.maskType) * defs.INVALID)
            mask[missing] = defs.MISSING
            mask[valid] = defs.VALID

        else:
            # innocent until proven guilty
            NP("logical_and", invalid, NP("logical_not", missing), invalid)
            if not NP("logical_or", invalid, missing).any():
                return data, None
            mask = NP("zeros", len(data), dtype=defs.maskType)
            mask[missing] = defs.MISSING
            mask[invalid] = defs.INVALID

        return data, mask
開發者ID:Huskyeder,項目名稱:augustus,代碼行數:53,代碼來源:FieldType.py

示例9: functionMultiset

    def functionMultiset(self, dataColumn, whereMask, groupSelection, getstate, setstate):
        """Derives a multiset of rows in a DataColumn, possibly with an SQL where mask and groupField.

        @type dataColumn: DataColumn
        @param dataColumn: The input data column.
        @type whereMask: 1d Numpy array of bool, or None
        @param whereMask: The result of the SQL where selection.
        @type groupSelection: 1d Numpy array of bool, or None.
        @param groupSelection: Rows corresponding to a particular value of the groupField.
        @type getstate: callable function
        @param getstate: Retrieve staring values from the DataTableState.
        @type setstate: callable function
        @param setstate: Store ending values to the DataTableState.
        @rtype: DataColumn of dict objects
        @return: A column of multisetted rows.
        """

        fieldType = FakeFieldType("object", "any")

        selection = NP("ones", len(dataColumn), dtype=NP.dtype(bool))
        if dataColumn.mask is not None:
            selection = NP("logical_and", selection, NP(dataColumn.mask == defs.VALID))

        if whereMask is not None:
            NP("logical_and", selection, whereMask, selection)

        if groupSelection is not None:
            NP("logical_and", selection, groupSelection, selection)

        multiset = {}
        if getstate is not None:
            startingState = getstate()
            if startingState is not None:
                multiset = startingState
        current = dict(multiset)

        data = NP("empty", len(dataColumn), dtype=NP.dtype(object))

        toPython = dataColumn.fieldType.valueToPython
        for i, x in enumerate(dataColumn.data):
            if selection[i]:
                value = toPython(x)
                if value not in multiset:
                    multiset[value] = 0
                multiset[value] += 1
                current = dict(multiset)
            data[i] = current

        if setstate is not None:
            setstate(multiset)

        return DataColumn(fieldType, data, None)
開發者ID:Huskyeder,項目名稱:augustus,代碼行數:52,代碼來源:Aggregate.py

示例10: applyMapMissingTo

    def applyMapMissingTo(fieldType, data, mask, mapMissingTo, overwrite=False):
        """Replace MISSING values with a given substitute.

        This function does not modify the original data (unless
        C{overwrite} is True), but it returns a substitute.  Example
        use::

            data, mask = dataColumn.data, dataColumn.mask
            data, mask = FieldCastMethods.applyMapMissingTo(dataColumn.fieldType, data, mask, "-999")
            return DataColumn(dataColumn.fieldType, data, mask)

        It can also be used in conjunction with other FieldCastMethods.

        @type fieldType: FieldType
        @param fieldType: The data fieldType (to interpret C{mapMissingTo}).
        @type data: 1d Numpy array
        @param data: The data.
        @type mask: 1d Numpy array of dtype defs.maskType, or None
        @param mask: The mask.
        @type mapMissingTo: string
        @param mapMissingTo: The replacement value, represented as a string (e.g. directly from a PMML attribute).
        @type overwrite: bool
        @param overwrite: If True, temporarily unlike and overwrite the original mask.
        @rtype: 2-tuple of 1d Numpy arrays
        @return: The new data and mask.
        """

        if mask is None: return data, mask

        if mapMissingTo is not None:
            selection = NP(mask == defs.MISSING)
            try:
                mappedValue = fieldType.stringToValue(mapMissingTo)
            except ValueError as err:
                raise defs.PmmlValidationError("mapMissingTo string \"%s\" cannot be cast as %r: %s" % (mapMissingTo, fieldType, str(err)))

            if overwrite:
                data.setflags(write=True)
                mask.setflags(write=True)
            else:
                data = NP("copy", data)
                mask = NP("copy", mask)

            data[selection] = mappedValue
            mask[selection] = defs.VALID

            if not mask.any():
                mask = None

        return data, mask
開發者ID:Huskyeder,項目名稱:augustus,代碼行數:50,代碼來源:FieldCastMethods.py

示例11: _fromDataColumn_number

 def _fromDataColumn_number(self, dataColumn):
     if dataColumn.mask is None:
         return NP("array", dataColumn.data, dtype=NP.dtype(object))
     else:
         output = NP("empty", len(dataColumn), dtype=NP.dtype(object))
         mask = dataColumn.mask
         for i, x in enumerate(dataColumn.data):
             if mask[i] == defs.VALID:
                 output[i] = x
             elif mask[i] == defs.MISSING:
                 output[i] = defs.NAN
             else:
                 output[i] = None
         return output
開發者ID:Huskyeder,項目名稱:augustus,代碼行數:14,代碼來源:FieldType.py

示例12: pointsToSmoothCurve

    def pointsToSmoothCurve(xarray, yarray, samples, smoothingScale, loop):
        """Fit a smooth line through a set of given numeric points
        with a characteristic smoothing scale.

        This is a non-parametric locally linear fit, used to plot data
        as a smooth line.

        @type xarray: 1d Numpy array of numbers
        @param xarray: Array of x values.
        @type yarray: 1d Numpy array of numbers
        @param yarray: Array of y values.
        @type samples: 1d Numpy array of numbers
        @param samples: Locations at which to fit the C{xarray} and C{yarray} with best-fit positions and derivatives.
        @type smoothingScale: number
        @param smoothingScale: Standard deviation of the Gaussian kernel used to smooth the locally linear fit.
        @type loop: bool
        @param loop: If False, disconnect the end of the fitted curve from the beginning.
        @rtype: 4-tuple of 1d Numpy arrays
        @return: C{xlist}, C{ylist}, C{dxlist}, C{dylist} appropriate for C{formatPathdata}.
        """

        ylist = []
        dylist = []

        for sample in samples:
            weights = NP(NP(NP("exp", NP(NP(-0.5 * NP("power", NP(xarray - sample), 2)) / NP(smoothingScale * smoothingScale))) / smoothingScale) / (math.sqrt(2.0*math.pi)))
            sum1 = weights.sum()
            sumx = NP(weights * xarray).sum()
            sumxx = NP(weights * NP(xarray * xarray)).sum()
            sumy = NP(weights * yarray).sum()
            sumxy = NP(weights * NP(xarray * yarray)).sum()

            delta = (sum1 * sumxx) - (sumx * sumx)
            intercept = ((sumxx * sumy) - (sumx * sumxy)) / delta
            slope = ((sum1 * sumxy) - (sumx * sumy)) / delta

            ylist.append(intercept + (sample * slope))
            dylist.append(slope)

        xlist = samples
        ylist = NP("array", ylist, dtype=NP.dtype(float))
        dxlist = NP((NP("roll", xlist, -1) - NP("roll", xlist, 1)) / 2.0)
        dylist = NP("array", dylist, dtype=NP.dtype(float)) * dxlist
        if not loop:
            dxlist[0] = 0.0
            dxlist[-1] = 0.0
            dylist[0] = 0.0
            dylist[-1] = 0.0

        return xlist, ylist, dxlist, dylist
開發者ID:Huskyeder,項目名稱:augustus,代碼行數:50,代碼來源:PlotCurve.py

示例13: _toDataColumn_number

    def _toDataColumn_number(self, data, mask):
        data, mask = self._checkNumpy(data, mask)
        if isinstance(data, NP.ndarray) and (mask is None or isinstance(mask, NP.ndarray)) and data.dtype == self.dtype:
            mask2 = NP("isnan", data)
            if mask is None:
                mask = NP("array", mask2, defs.maskType) * defs.MISSING
            else:
                mask[mask2] = defs.MISSING

        else:
            data, mask = self._checkNonNumpy(data, mask)
            try:
                data = NP("array", data, dtype=self.dtype)
                # mask is handled in the else statement after the except block

            except (ValueError, TypeError):
                data2 = NP("empty", len(data), dtype=self.dtype)
                if mask is None:
                    mask2 = NP("zeros", len(data), dtype=defs.maskType)
                else:
                    mask2 = NP("fromiter", ((defs.VALID if not m else defs.MISSING) for m in mask), dtype=defs.maskType, count=len(mask))

                for i, v in enumerate(data):
                    try:
                        data2[i] = v
                        if mask2[i] == defs.VALID and ((isinstance(v, float) and math.isnan(v)) or (isinstance(v, basestring) and v.upper() == "NAN")):
                            mask2[i] = defs.MISSING
                        if v is None:
                            raise TypeError
                    except (ValueError, TypeError):
                        data2[i] = defs.PADDING
                        if mask2[i] == defs.VALID:
                            if (isinstance(v, float) and math.isnan(v)) or (isinstance(v, basestring) and v.upper() == "NAN"):
                                mask2[i] = defs.MISSING
                            else:
                                mask2[i] = defs.INVALID

                if not mask2.any():
                    mask2 = None

                data, mask = data2, mask2

            else:
                mask2 = NP("isnan", data)
                if mask is None:
                    mask = NP("array", mask2, defs.maskType)
                else:
                    mask = NP(NP("array", NP("logical_or", mask2, NP("fromiter", (m != 0 for m in mask), dtype=NP.dtype(bool), count=len(mask))), defs.maskType) * defs.MISSING)
                if not mask.any():
                    mask = None

        data, mask = self._checkValues(data, mask)
        data, mask = self._checkIntervals(data, mask)
        return DataColumn(self, data, mask)
開發者ID:Huskyeder,項目名稱:augustus,代碼行數:54,代碼來源:FieldType.py

示例14: _stringToValue_date

    def _stringToValue_date(self, string):
        regex = re.match(self._iso8601_date, string)
        if regex is None:
            raise ValueError("invalid ISO 8601 date string: \"%s\"" % string)

        year = regex.group(1)
        month = regex.group(3)
        day = regex.group(5)
        
        try:
            if year is not None and month is not None and day is not None:
                dateTimeObject = datetime.datetime(int(year), int(month), int(day))

            elif year is not None and month is not None:
                dateTimeObject = datetime.datetime(int(year), int(month), 1)

            elif year is not None:
                dateTimeObject = datetime.datetime(int(year), 1, 1)

            else:
                raise ValueError

        except ValueError:
            raise ValueError("invalid ISO 8601 date string: \"%s\"" % string)

        td = dateTimeObject - self._dateTimeOrigin
        return NP.int64(td.days*86400 * self._dateTimeResolution)
開發者ID:Huskyeder,項目名稱:augustus,代碼行數:27,代碼來源:FieldType.py

示例15: evaluate

        def evaluate(self, dataTable, functionTable, performanceTable, arguments):
            arguments = [x.evaluate(dataTable, functionTable, performanceTable) for x in arguments]
            performanceTable.begin("built-in \"%s\"" % self.name)

            fieldType = self.fieldTypeFromSignature(arguments)
            left, right = arguments

            zeroDenominators = NP(NP(right.data == 0.0) * defs.INVALID)
            if not zeroDenominators.any():
                zeroDenominators = None

            mask = DataColumn.mapAnyMissingInvalid([zeroDenominators, left.mask, right.mask])

            dataColumn = DataColumn(fieldType, NP("floor_divide", left.data, right.data), mask)

            performanceTable.end("built-in \"%s\"" % self.name)
            return dataColumn
開發者ID:Huskyeder,項目名稱:augustus,代碼行數:17,代碼來源:FunctionTableExtra.py


注:本文中的augustus.core.NumpyInterface.NP類示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。