本文整理匯總了Python中astropy.cosmology.Planck13.comoving_distance方法的典型用法代碼示例。如果您正苦於以下問題:Python Planck13.comoving_distance方法的具體用法?Python Planck13.comoving_distance怎麽用?Python Planck13.comoving_distance使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類astropy.cosmology.Planck13
的用法示例。
在下文中一共展示了Planck13.comoving_distance方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: slice_z_cosmo
# 需要導入模塊: from astropy.cosmology import Planck13 [as 別名]
# 或者: from astropy.cosmology.Planck13 import comoving_distance [as 別名]
def slice_z_cosmo(slice, z, radius):
"""Slices in redshift considering a distance to cut"""
zmax = z_at_value(cosmo.comoving_distance, cosmo.comoving_distance(z) + radius)
zmin = z_at_value(cosmo.comoving_distance, cosmo.comoving_distance(z) - radius)
print zmin - zmax
slice = slice[np.where(slice["zb_1"] < zmax)]
slice = slice[np.where(slice["zb_1"] > zmin)]
return slice
示例2: single_run_test
# 需要導入模塊: from astropy.cosmology import Planck13 [as 別名]
# 或者: from astropy.cosmology.Planck13 import comoving_distance [as 別名]
def single_run_test(ind,ysc1,ysc2,q,vd,pha,zl,zs):
dsx_sdss = 0.396 # pixel size of SDSS detector.
R = 3.0000 #
nnn = 300 #Image dimension
bsz = 9.0 # arcsecs
dsx = bsz/nnn # pixel size of SDSS detector.
nstd = 59 #^2
xx01 = np.linspace(-bsz/2.0,bsz/2.0,nnn)+0.5*dsx
xx02 = np.linspace(-bsz/2.0,bsz/2.0,nnn)+0.5*dsx
xi2,xi1 = np.meshgrid(xx01,xx02)
#----------------------------------------------------------------------
dsi = 0.03
g_source = pyfits.getdata("./439.0_149.482739_1.889989_processed.fits")
g_source = np.array(g_source,dtype="<d")*10.0
g_source[g_source<=0.0001] = 1e-6
#----------------------------------------------------------------------
xc1 = 0.0 #x coordinate of the center of lens (in units of Einstein radius).
xc2 = 0.0 #y coordinate of the center of lens (in units of Einstein radius).
#q = 0.7 #Ellipticity of lens.
rc = 0.0 #Core size of lens (in units of Einstein radius).
re = re_sv(vd,zl,zs) #Einstein radius of lens.
#pha = 45.0 #Orintation of lens.
lpar = np.asarray([xc1,xc2,q,rc,re,pha])
#----------------------------------------------------------------------
ai1,ai2,mua = lens_equation_sie(xi1,xi2,lpar)
yi1 = xi1-ai1
yi2 = xi2-ai2
g_limage = lv4.call_ray_tracing(g_source,xi1,xi2,ysc1,ysc2,dsi)
g_limage[g_limage<=0.0001] = 1e-6
g_limage = p2p.cosccd2mag(g_limage)
g_limage = p2p.mag2sdssccd(g_limage)
#-------------------------------------------------------------
# Need to be Caliborate the mags
dA = Planck13.comoving_distance(zl).value*1000./(1+zl)
Re = dA*np.sin(R*np.pi/180./3600.)
counts =Brightness(Re,vd)
vpar = np.asarray([counts,R,xc1,xc2,q,pha])
#g_lens = deVaucouleurs(xi1,xi2,xc1,xc2,counts,R,1.0-q,pha)
g_lens = de_vaucouleurs_2d(xi1,xi2,vpar)
#pl.figure()
#pl.contourf(g_lens)
#pl.colorbar()
g_clean_ccd1 = g_lens*0.0+g_limage
g_clean_ccd2 = g_lens*1.0+g_limage
from scipy.ndimage.filters import gaussian_filter
pl.figure()
pl.contourf(g_clean_ccd1)
pl.colorbar()
pl.savefig("/Users/uranus/GitHub/data_arc_finding_cnn/unlensed_output_pngs/"+str(i)+"_lensed_imgs_only.png")
#-------------------------------------------------------------
g_images_psf1 = gaussian_filter(g_clean_ccd1, 2.0)
g_images_psf2 = gaussian_filter(g_clean_ccd2, 2.0)
#g_images_psf = ss.convolve(g_clean_ccd,g_psf,mode="same")
#g_images_psf = g_clean_ccd
#-------------------------------------------------------------
# Need to be Caliborate the mags
g_noise = noise_map(nnn,nnn,np.sqrt(nstd),"Gaussian")
#output_filename = "./output_fits/noise_map.fits"
#pyfits.writeto(output_filename,g_noise,clobber=True)
#-------------------------------------------------------------
g_final1 = g_images_psf1+g_noise
output_filename = "/Users/uranus/GitHub/data_arc_finding_cnn/unlensed_output_fits/"+str(i)+"_lensed_imgs_only.fits"
pyfits.writeto(output_filename,g_final1,clobber=True)
#-------------------------------------------------------------
g_final2 = g_images_psf2+g_noise
output_filename = "/Users/uranus/GitHub/data_arc_finding_cnn/unlensed_output_fits/"+str(i)+"_all_imgs.fits"
pyfits.writeto(output_filename,g_final2,clobber=True)
return 0
示例3: single_run_test
# 需要導入模塊: from astropy.cosmology import Planck13 [as 別名]
# 或者: from astropy.cosmology.Planck13 import comoving_distance [as 別名]
def single_run_test(ind, ysc1, ysc2, q, vd, pha, zl, zs, lens_tag=1):
# dsx_sdss = 0.396 # pixel size of SDSS detector.
R = 3.0
nnn = 400 # Image dimension
bsz = 9.0 # arcsecs
dsx = bsz / nnn # pixel size of SDSS detector.
nstd = 59 # ^2
xi1, xi2 = make_r_coor(nnn, dsx)
# ----------------------------------------------------------------------
dsi = 0.03
g_source = pyfits.getdata(
"./gals_sources/439.0_149.482739_1.889989_processed.fits")
g_source = np.array(g_source, dtype="<d") * 10.0
g_source[g_source <= 0.0001] = 1e-6
# ----------------------------------------------------------------------
# x coordinate of the center of lens (in units of Einstein radius).
xc1 = 0.0
# y coordinate of the center of lens (in units of Einstein radius).
xc2 = 0.0
rc = 0.0 # Core size of lens (in units of Einstein radius).
re = re_sv(vd, zl, zs) # Einstein radius of lens.
print "re = ", re
re_sub = 0.0 * re
a_sub = a_b_bh(re_sub, re)
ext_shears = 0.06
ext_angle = -0.39
ext_kappa = 0.08
# ext_shears = 0.0
# ext_angle = 0.0
# ext_kappa = 0.0
# ----------------------------------------------------------------------
#lpar = np.asarray([xc1, xc2, q, rc, re, pha])
#ai1, ai2, kappa_out, shr1, shr2, mua = lensing_signals_sie(xi1, xi2, lpar)
#ar = np.sqrt(ai1 * ai1 + ai2 * ai2)
# psi_nie = psk.potential_nie(xc1, xc2, pha, q, re, rc, ext_shears, ext_angle,
# ext_kappa, xi1, xi2)
#ai1, ai2 = np.gradient(psi_nie, dsx)
ai1, ai2 = psk.deflection_nie(xc1, xc2, pha, q, re, rc, ext_shears, ext_angle,
ext_kappa, xi1, xi2)
as1, as2 = psk.deflection_sub_pJaffe(0.0, -2.169, re_sub, 0.0, a_sub, xi1, xi2)
yi1 = xi1 - ai1 - as1
yi2 = xi2 - ai2 - as2
g_limage = lv4.call_ray_tracing(g_source, yi1, yi2, ysc1, ysc2, dsi)
g_limage[g_limage <= 0.25] = 1e-6
# pl.figure()
# pl.contourf(g_limage)
# pl.colorbar()
g_limage = cosccd2mag(g_limage)
g_limage = mag2sdssccd(g_limage)
# pl.figure()
# pl.contourf(g_limage)
# pl.colorbar()
# -------------------------------------------------------------
dA = Planck13.comoving_distance(zl).value * 1000. / (1.0 + zl)
Re = dA * np.sin(R * np.pi / 180. / 3600.)
counts = Brightness(Re, vd)
vpar = np.asarray([counts, R, xc1, xc2, q, pha])
g_lens = de_vaucouleurs_2d(xi1, xi2, vpar)
g_clean_ccd = g_lens * lens_tag + g_limage
output_filename = "./fits_outputs/clean_lensed_imgs.fits"
pyfits.writeto(output_filename, g_clean_ccd, overwrite=True)
# -------------------------------------------------------------
from scipy.ndimage.filters import gaussian_filter
g_images_psf = gaussian_filter(g_clean_ccd, 2.0)
# -------------------------------------------------------------
g_noise = noise_map(nnn, nnn, np.sqrt(nstd), "Gaussian")
output_filename = "./fits_outputs/noise_map.fits"
pyfits.writeto(output_filename, g_noise, overwrite=True)
g_final = g_images_psf + g_noise
# -------------------------------------------------------------
g_clean_ccd = g_limage
g_images_psf = gaussian_filter(g_clean_ccd, 2.0)
g_final = g_images_psf + g_noise
output_filename = "./fits_outputs/lensed_imgs_only.fits"
pyfits.writeto(output_filename, g_final, overwrite=True)
# -------------------------------------------------------------
output_filename = "./fits_outputs/full_lensed_imgs.fits"
pyfits.writeto(output_filename, g_final + g_lens, overwrite=True)
# pl.figure()
# pl.contourf(g_final)
# pl.colorbar()
return 0
示例4: Mpc
# 需要導入模塊: from astropy.cosmology import Planck13 [as 別名]
# 或者: from astropy.cosmology.Planck13 import comoving_distance [as 別名]
#Find the RA, DEC, Z
#galra=galdat.RA[:100]
#galdec=galdat.DEC[:100]
#galz=galdat.Z[:100]
cutra=cutdat.RA
cutdec=cutdat.DEC
cutz=cutdat.Z
randra=randat.RA
randdec=randat.DEC
randz=randat.Z
#Convert redshift to Mpc (Using Planck Results stored in astropy.cosmology)
#comoving=Planck13.comoving_distance(galz)
cutX=Planck13.comoving_distance(cutz)
randX=Planck13.comoving_distance(randz)
end2=time.time()
print end2-start, 'Comoving distances calculated'
'''
#From working cosmology code
def Horizon(x, t, Om, Og, Ol, Ok):
F=(x**-2)*(Om/x**3+Og/x**4+Ol+Ok/x**2)**-0.5
return F
Om=0.307
Og=0
Ol=0.693
Ok=1-(Om+Og+Ol)
t=linspace(0,1,100000)
DA=[]
示例5: single_run_test
# 需要導入模塊: from astropy.cosmology import Planck13 [as 別名]
# 或者: from astropy.cosmology.Planck13 import comoving_distance [as 別名]
def single_run_test(ind,ysc1,ysc2,q,vd,pha,zl,zs):
dsx_sdss = 0.396 # pixel size of SDSS detector.
R = 3.0000 #
#zl = 0.2 #zl is the redshift of the lens galaxy.
#zs = 1.0
#vd = 520 #Velocity Dispersion.
nnn = 128 #Image dimension
bsz = dsx_sdss*nnn # arcsecs
dsx = bsz/nnn # pixel size of SDSS detector.
nstd = 59 #^2
xx01 = np.linspace(-bsz/2.0,bsz/2.0,nnn)+0.5*dsx
xx02 = np.linspace(-bsz/2.0,bsz/2.0,nnn)+0.5*dsx
xi2,xi1 = np.meshgrid(xx01,xx02)
#----------------------------------------------------------------------
#ysc1 = 0.2
#ysc2 = 0.5
dsi = 0.03
g_source = pyfits.getdata("./439.0_149.482739_1.889989_processed.fits")
g_source = np.array(g_source,dtype="<d")*10.0
g_source[g_source<=0.0001] = 1e-6
#print np.sum(g_source)
#print np.max(g_source)
#pl.figure()
#pl.contourf(g_source)
#pl.colorbar()
#g_source = p2p.cosccd2mag(g_source)
##g_source = p2p.mag2sdssccd(g_source)
##print np.max(g_source*13*13*52.0)
#pl.figure()
#pl.contourf(g_source)
#pl.colorbar()
#----------------------------------------------------------------------
xc1 = 0.0 #x coordinate of the center of lens (in units of Einstein radius).
xc2 = 0.0 #y coordinate of the center of lens (in units of Einstein radius).
#q = 0.7 #Ellipticity of lens.
rc = 0.0 #Core size of lens (in units of Einstein radius).
re = re_sv(vd,zl,zs) #Einstein radius of lens.
#pha = 45.0 #Orintation of lens.
lpar = np.asarray([xc1,xc2,q,rc,re,pha])
#----------------------------------------------------------------------
ai1,ai2,mua = lens_equation_sie(xi1,xi2,lpar)
yi1 = xi1-ai1
yi2 = xi2-ai2
g_limage = lv4.call_ray_tracing(g_source,yi1,yi2,ysc1,ysc2,dsi)
g_limage[g_limage<=0.0001] = 1e-6
g_limage = p2p.cosccd2mag(g_limage)
g_limage = p2p.mag2sdssccd(g_limage)
#pl.figure()
#pl.imshow((g_limage),interpolation='lanczos',cmap=cm.gray)
#pl.colorbar()
#-------------------------------------------------------------
# Need to be Caliborate the mags
dA = Planck13.comoving_distance(zl).value*1000./(1+zl)
Re = dA*np.sin(R*np.pi/180./3600.)
counts =Brightness(Re,vd)
vpar = np.asarray([counts,R,xc1,xc2,q,pha])
#g_lens = deVaucouleurs(xi1,xi2,xc1,xc2,counts,R,1.0-q,pha)
g_lens = de_vaucouleurs_2d(xi1,xi2,vpar)
#pl.figure()
#pl.imshow((g_lens),interpolation='nearest',cmap=cm.gray)
#pl.colorbar()
g_clean_ccd = g_lens+g_limage
#pl.figure()
#pl.imshow((g_clean_ccd),interpolation='nearest',cmap=cm.gray)
#pl.colorbar()
g_clean_ccd = congrid.congrid(g_clean_ccd,[128,128])
#-------------------------------------------------------------
file_psf = "../PSF_and_noise/sdsspsf.fits"
g_psf = pyfits.getdata(file_psf)-1000.0
g_psf = g_psf/np.sum(g_psf)
#new_shape=[0,0]
#new_shape[0]=np.shape(g_psf)[0]*dsx_sdss/dsx
#new_shape[1]=np.shape(g_psf)[1]*dsx_sdss/dsx
#g_psf = rebin_psf(g_psf,new_shape)
g_images_psf = ss.fftconvolve(g_clean_ccd,g_psf,mode="same")
#g_images_psf = ss.convolve(g_clean_ccd,g_psf,mode="same")
#g_images_psf = g_clean_ccd
#pl.figure()
#pl.imshow((g_psf),interpolation='nearest',cmap=cm.gray)
#pl.colorbar()
#-------------------------------------------------------------
# Need to be Caliborate the mags
#g_noise = noise_map(nnn,nnn,np.sqrt(nstd),"Gaussian")
g_noise = noise_map(128,128,np.sqrt(nstd),"Gaussian")
g_final = g_images_psf+g_noise
#.........這裏部分代碼省略.........
示例6: X
# 需要導入模塊: from astropy.cosmology import Planck13 [as 別名]
# 或者: from astropy.cosmology.Planck13 import comoving_distance [as 別名]
def X(f):
z=f21/f-1
return pl13.comoving_distance(z).value
示例7: kperp2u
# 需要導入模塊: from astropy.cosmology import Planck13 [as 別名]
# 或者: from astropy.cosmology.Planck13 import comoving_distance [as 別名]
def kperp2u(kperp,z):
return kperp/(2.*pi)*pl13.comoving_distance(z).value
示例8: u2kperp
# 需要導入模塊: from astropy.cosmology import Planck13 [as 別名]
# 或者: from astropy.cosmology.Planck13 import comoving_distance [as 別名]
def u2kperp(u,z):
return u*2.*pi/pl13.comoving_distance(z).value
示例9:
# 需要導入模塊: from astropy.cosmology import Planck13 [as 別名]
# 或者: from astropy.cosmology.Planck13 import comoving_distance [as 別名]
help="Noise variance",metavar="value",
type="float")
parser.add_option("--NoiseType",dest="NoiseType",default="Gaussian",
help="Gaussian or Poisson",metavar="value",
type="string")
(o,args)=parser.parse_args()
R =o.R_eff #vd is velocity dispersion.
zl =o.zlens #zl is the redshift of the lens galaxy.
Vd =o.VelDis #Velocity Dispersion.
Npix =o.Npix #Image dimension
e =o.E #Ellipticity of simulated galaxy
phi =o.Phi #Orientation angle wrt North
nstd =np.sqrt(o.NoiseVar)
dA =Planck13.comoving_distance(zl).value*1000./(1+zl)
Re =dA*np.sin(R*np.pi/180./3600.)
print Re
imgal =deVaucouleurs(R,Re,Vd,e,phi,Npix)
skycount=sky_r/(nMgyCount_r)
if o.NoiseType=='Poisson':
print '## Hey! You choose Poisson noise. Which is not good for now.'
noise=np.random.poisson(nstd,(Npix,Npix))-nstd
if o.NoiseType=='Gaussian':
print '## Hey! You choose Gaussian noise.'
noise=nstd*np.random.normal(0.0,1.0,(Npix,Npix))
import matplotlib.pyplot as plt
#plt.imshow((imgal+noise),interpolation='Nearest',cmap=cm.gray)
示例10: single_run_test
# 需要導入模塊: from astropy.cosmology import Planck13 [as 別名]
# 或者: from astropy.cosmology.Planck13 import comoving_distance [as 別名]
def single_run_test(ind,ysc1,ysc2,q,vd,pha,zl,zs):
zeropoint = 18
dsx_sdss = 0.396 # pixel size of SDSS detector.
R = 2.9918 #vd is velocity dispersion.
#zl = 0.2 #zl is the redshift of the lens galaxy.
#zs = 1.0
#vd = 520 #Velocity Dispersion.
nnn = 512 #Image dimension
bsz = 30.0 # arcsecs
dsx = bsz/nnn # pixel size of SDSS detector.
nstd = 59
xx01 = np.linspace(-bsz/2.0,bsz/2.0,nnn)+0.5*dsx
xx02 = np.linspace(-bsz/2.0,bsz/2.0,nnn)+0.5*dsx
xi2,xi1 = np.meshgrid(xx01,xx02)
#----------------------------------------------------------------------
#ysc1 = 0.2
#ysc2 = 0.5
dsi = 0.03
g_source = pyfits.getdata("./439.0_149.482739_1.889989_processed.fits")
g_source = np.array(g_source,dtype="<d")
g_source = p2p.pixcos2pixsdss(g_source)
#----------------------------------------------------------------------
xc1 = 0.0 #x coordinate of the center of lens (in units of Einstein radius).
xc2 = 0.0 #y coordinate of the center of lens (in units of Einstein radius).
#q = 0.7 #Ellipticity of lens.
rc = 0.0 #Core size of lens (in units of Einstein radius).
re = re_sv(vd,zl,zs) #Einstein radius of lens.
#pha = 45.0 #Orintation of lens.
lpar = np.asarray([xc1,xc2,q,rc,re,pha])
#----------------------------------------------------------------------
ai1,ai2,mua = lens_equation_sie(xi1,xi2,lpar)
yi1 = xi1-ai1
yi2 = xi2-ai2
g_limage = lv4.call_ray_tracing(g_source,yi1,yi2,ysc1,ysc2,dsi)
g_limage = mag_to_flux(g_limage,zeropoint)
#pl.figure()
#pl.contourf(xi1,xi2,g_limage)
#pl.colorbar()
#-------------------------------------------------------------
# Need to be Caliborate the mags
dA = Planck13.comoving_distance(zl).value*1000./(1+zl)
Re = dA*np.sin(R*np.pi/180./3600.)
counts =Brightness(R,vd)
vpar = np.asarray([counts,Re,xc1,xc2,q,pha])
#g_lens = deVaucouleurs(xi1,xi2,xc1,xc2,counts,R,1.0-q,pha)
g_lens = de_vaucouleurs_2d(xi1,xi2,vpar)
g_lens = ncounts_to_flux(g_lens*1.5e-4,zeropoint)
#-------------------------------------------------------------
file_psf = "../PSF_and_noise/sdsspsf.fits"
g_psf = pyfits.getdata(file_psf)-1000.0
g_psf = g_psf/np.sum(g_psf)
new_shape=[0,0]
new_shape[0]=np.shape(g_psf)[0]*dsx_sdss/dsx
new_shape[1]=np.shape(g_psf)[1]*dsx_sdss/dsx
g_psf = rebin_psf(g_psf,new_shape)
print(np.max(g_psf))
g_limage = ss.fftconvolve(g_limage+g_lens,g_psf,mode="same")
#pl.figure()
#pl.contourf(xi1,xi2,g_limage)
#pl.colorbar()
#-------------------------------------------------------------
# Need to be Caliborate the mags
g_noise = noise_map(nnn,nnn,nstd,"Gaussian")
g_noise = ncounts_to_flux(g_noise*1e-0+skycount,zeropoint)
g_limage = g_limage+g_noise
print np.shape(g_limage)
g_limage = congrid.congrid(g_limage,[128,128])
g_limage = g_limage-np.min(g_limage)
pl.figure()
#pl.contourf(xi1,xi2,g_limage)
pl.contourf(g_limage)
pl.colorbar()
#-------------------------------------------------------------
output_filename = "../output_fits/"+str(ind)+".fits"
pyfits.writeto(output_filename,g_limage,clobber=True)
pl.show()
return 0
示例11: distance_Mpc
# 需要導入模塊: from astropy.cosmology import Planck13 [as 別名]
# 或者: from astropy.cosmology.Planck13 import comoving_distance [as 別名]
def distance_Mpc(self):
return cosmo.comoving_distance(self.redshift).value
示例12: print
# 需要導入模塊: from astropy.cosmology import Planck13 [as 別名]
# 或者: from astropy.cosmology.Planck13 import comoving_distance [as 別名]
#---------------------------
#------ dirs --
home=os.getenv('HOME')
scratch='/global/cscratch1/sd/fantaye' #os.getenv('SCRATCH')
srcdir=join(scratch,'seedlets/fits1024/SurfDensMap/')
#os.listdir(srcdir)
print('home:',home)
print('srcdir',srcdir)
#---- original file info
#columns: ##1:snap 2:redshift 3:Nparts 4:shot_noise
id_sim, z_sim, nobj_sim,snoise_sim = np.loadtxt('../data/3Dneedlets/std_total_parts_found_from_049_to_049.dat',unpack=True)
r_sim=cosmo.comoving_distance(z_sim)
rho_file=lambda x: '../data/3Dneedlets/HealPixMap_nside1024_NoRnd_Radius0_std/SurfDensMap_snap_049.{}.fits'.format(x)
kappa_file=lambda x: '../data/3Dneedlets/LightCones_nside1024_NoRnd_Radius0_std/KappaMap_snap_049.{}.fits'.format(x)
orig_file=rho_file
#---- maps file path
b2b_file=lambda x: join(srcdir, 'beta2b//maps/map.unf_{}'.format(x))
a2b_file=lambda x: join(srcdir, 'a2b//maps//map.unf_{}'.format(x))
beta_file=lambda x, y:join(srcdir, 'a2beta//maps/map.unf_gln1_j{}_r{}.unf'.format(x,y))
#---- power spectra file path
nlist_cln=['b2a/cln.unf','beta2b/cln.unf']
nlist_cl=[ 'b2a/meancl.unf','beta2b/meancl.unf']
clx_file=lambda x: join(srcdir, '{}'.format(x))
#----- figure output dir
示例13: main
# 需要導入模塊: from astropy.cosmology import Planck13 [as 別名]
# 或者: from astropy.cosmology.Planck13 import comoving_distance [as 別名]
def main():
#dsx = 0.396 # pixel size of SDSS detector.
dsx = 0.05 # pixel size of SDSS detector.
R = 2.9918 #vd is velocity dispersion.
zl = 0.2 #zl is the redshift of the lens galaxy.
zs = 1.0
vd = 220 #Velocity Dispersion.
nnn = 128 #Image dimension
bsz = dsx*nnn
nstd = 59
xx01 = np.linspace(-bsz/2.0,bsz/2.0,nnn)+0.5*dsx
xx02 = np.linspace(-bsz/2.0,bsz/2.0,nnn)+0.5*dsx
xi2,xi1 = np.meshgrid(xx01,xx02)
#----------------------------------------------------------------------
g_amp = 10.0 # peak brightness value
g_sig = 0.02 # Gaussian "sigma" (i.e., size)
g_xcen = 0.06 # x position of center (also try (0.0,0.14)
g_ycen = 0.11 # y position of center
g_axrat = 1.0 # minor-to-major axis ratio
g_pa = 0.0 # major-axis position angle (degrees) c.c.w. from x axis
gpar = np.asarray([g_amp,g_sig,g_xcen,g_ycen,g_axrat,g_pa])
#----------------------------------------------------------------------
#g_source = 0.0*xi1
#g_source = gauss_2d(xi1,xi2,gpar) # modeling source as 2d Gaussian with input parameters.
#----------------------------------------------------------------------
xc1 = 0.0 #x coordinate of the center of lens (in units of Einstein radius).
xc2 = 0.0 #y coordinate of the center of lens (in units of Einstein radius).
q = 0.7 #Ellipticity of lens.
rc = 0.0 #Core size of lens (in units of Einstein radius).
re = re_sv(vd,zl,zs) #Einstein radius of lens.
pha = 45.0 #Orintation of lens.
lpar = np.asarray([xc1,xc2,q,rc,re,pha])
#----------------------------------------------------------------------
ai1,ai2,mua = lens_equation_sie(xi1,xi2,lpar)
yi1 = xi1-ai1
yi2 = xi2-ai2
#----------------------------------------------------------------------
gpar = np.asarray([g_amp,g_sig,g_xcen,g_ycen,g_axrat,g_pa])
g_limage = gauss_2d(yi1,yi2,gpar)
#print np.sum(g_limage)
#pl.figure()
#pl.contourf(g_limage)
#pl.colorbar()
#g_limage = rebin_array_2d.rebin(g_limage,[128,128])
#-------------------------------------------------------------
dA = Planck13.comoving_distance(zl).value*1000./(1+zl)
Re = dA*np.sin(R*np.pi/180./3600.)
counts =Brightness(R,vd)
vpar = np.asarray([counts,Re,xc1,xc2,q,pha])
#g_lens = deVaucouleurs(xi1,xi2,xc1,xc2,counts,R,1.0-q,pha)
g_lens = de_vaucouleurs_2d(xi1,xi2,vpar)
g_lens = g_lens/1e4
file_psf = "../PSF_and_noise/sdsspsf.fits"
g_psf = pyfits.getdata(file_psf)-1000.0
g_psf = g_psf/np.sum(g_psf)
g_limage = ss.fftconvolve(g_limage+g_lens,g_psf,mode="same")
g_noise = noise_map(nnn,nnn,nstd,"Gaussian")
g_limage = g_limage+(g_noise+skycount)/200.0
pl.figure()
pl.contourf(g_limage)
pl.colorbar()
output_filename = "../output_fits/test.fits"
pyfits.writeto(output_filename,g_limage,clobber=True)
pl.show()
return 0
示例14: len
# 需要導入模塊: from astropy.cosmology import Planck13 [as 別名]
# 或者: from astropy.cosmology.Planck13 import comoving_distance [as 別名]
twinklesid = agn_twinkles_id[:]
xs = hdulist[1].data['XSRC'][twinklesid] # needed from OM10
ys = hdulist[1].data['YSRC'][twinklesid]
zl = hdulist[1].data['ZLENS'][twinklesid]
#----------------------------------------------------------------------------
host_id, host_ra, host_dec, host_mag_norm, host_redshift, host_major_axis, host_minor_axis = np.loadtxt("./twinkles_DESC_SLAC/sprinkled_lens_galaxies_230.txt", comments='#', delimiter=',', converters=None, skiprows=1, usecols=None, unpack=True, ndmin=0)
host_id = host_id.astype('int')
# Da_s = p13.angular_diameter_distance(agn_redshift).value
# Da_l = p13.angular_diameter_distance(zl).value
Dc_s = p13.comoving_distance(agn_redshift).value
Dc_l = p13.comoving_distance(zl).value
idx = agn_image_num == 0
host_nid = np.array(agn_twinkles_id)[idx]
lang_nid = np.array(agn_image_num)[idx]
host_nra = np.array(xs)[idx]
host_ndec= np.array(ys)[idx]
host_nmag= np.array(np.random.choice(host_mag_norm, len(agn_id), replace=True)
- 5.0*np.log10(Dc_l/Dc_s))[idx]
host_nred= np.array(agn_redshift)[idx]
host_nma = np.array(np.random.choice(host_major_axis, len(agn_id)) * Dc_l/Dc_s)[idx]
host_nmb = np.array(np.random.choice(host_minor_axis, len(agn_id)) * Dc_l/Dc_s)[idx]
np.savetxt("./twinkles_DESC_SLAC/sprinkled_host_galaxies_230.txt",