本文整理匯總了Python中ase.utils.eos.EquationOfState類的典型用法代碼示例。如果您正苦於以下問題:Python EquationOfState類的具體用法?Python EquationOfState怎麽用?Python EquationOfState使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
在下文中一共展示了EquationOfState類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: fit
def fit(filename):
configs = read(filename + '@:')
volumes = [a.get_volume() for a in configs]
energies = [a.get_potential_energy() for a in configs]
eos = EquationOfState(volumes, energies)
v0, e0, B = eos.fit()
return (4 * v0)**(1 / 3.0)
示例2: eos
def eos(self, atoms, name):
opts = self.opts
traj = PickleTrajectory(self.get_filename(name, 'traj'), 'w', atoms)
eps = 0.01
strains = np.linspace(1 - eps, 1 + eps, 5)
v1 = atoms.get_volume()
volumes = strains**3 * v1
energies = []
cell1 = atoms.cell
for s in strains:
atoms.set_cell(cell1 * s, scale_atoms=True)
energies.append(atoms.get_potential_energy())
traj.write(atoms)
traj.close()
eos = EquationOfState(volumes, energies, opts.eos_type)
v0, e0, B = eos.fit()
atoms.set_cell(cell1 * (v0 / v1)**(1 / 3), scale_atoms=True)
data = {'volumes': volumes,
'energies': energies,
'fitted_energy': e0,
'fitted_volume': v0,
'bulk_modulus': B,
'eos_type': opts.eos_type}
return data
示例3: bulk_summary
def bulk_summary(self, plot, a0):
natoms = len(self.atoms)
eos = EquationOfState(self.volumes, self.energies)
v, e, B = eos.fit()
x = (v / self.atoms.get_volume())**(1.0 / 3)
self.log('Fit using %d points:' % len(self.energies))
self.log('Volume per atom: %.3f Ang^3' % (v / natoms))
if a0:
a = a0 * x
self.log('Lattice constant: %.3f Ang' % a)
else:
a = None
self.log('Bulk modulus: %.1f GPa' % (B * 1e24 / units.kJ))
self.log('Total energy: %.3f eV (%d atom%s)' %
(e, natoms, ' s'[1:natoms]))
if plot:
import pylab as plt
plt.plot(self.volumes, self.energies, 'o')
x = np.linspace(self.volumes[0], self.volumes[-1], 50)
plt.plot(x, eos.fit0(x**-(1.0 / 3)), '-r')
plt.show()
bulk = self.atoms.copy()
bulk.set_cell(x * bulk.cell, scale_atoms=True)
self.write_optimized(bulk, e)
return e, v, B, a
示例4: analyse
def analyse(self):
for name, data in self.data.items():
if 'strains' in data:
atoms = self.create_system(name)
# use relaxed volume if present
if 'relaxed volume' in data:
volume = data['relaxed volume']
else:
volume = atoms.get_volume()
volumes = data['strains']**3 * volume
energies = data['energies']
# allow selection of eos type independent of data
if self.eos is not None:
eos = EquationOfState(volumes, energies, self.eos)
else:
eos = EquationOfState(volumes, energies)
try:
v, e, B = eos.fit()
except (RuntimeError, ValueError):
pass
else:
data['fitted energy'] = e
data['volume'] = v
data['B'] = B
if abs(v) < min(volumes) or abs(v) > max(volumes):
raise ValueError(name + ': fit outside of range! ' + \
str(abs(v)) + ' not in ' + \
str(volumes))
示例5: f
def f(width, k, g):
filename = 'Fe-FD-%.2f-%02d-%2d.traj' % (width, k, g)
configs = read(filename + '@::2')
# Extract volumes and energies:
volumes = [a.get_volume() for a in configs]
energies = [a.get_potential_energy() for a in configs]
eos = EquationOfState(volumes, energies)
v0, e0, B = eos.fit()
return v0, e0, B
示例6: relax
def relax(input_atoms, ref_db):
atoms_string = input_atoms.get_chemical_symbols()
# Open connection to the database with reference data
db = connect(ref_db)
# Load our model structure which is just FCC
atoms = FaceCenteredCubic('X', latticeconstant=1.)
atoms.set_chemical_symbols(atoms_string)
# Compute the average lattice constant of the metals in this individual
# and the sum of energies of the constituent metals in the fcc lattice
# we will need this for calculating the heat of formation
a = 0
ei = 0
for m in set(atoms_string):
dct = db.get(metal=m)
count = atoms_string.count(m)
a += count * dct.latticeconstant
ei += count * dct.energy_per_atom
a /= len(atoms_string)
atoms.set_cell([a, a, a], scale_atoms=True)
# Since calculations are extremely fast with EMT we can also do a volume
# relaxation
atoms.set_calculator(EMT())
eps = 0.05
volumes = (a * np.linspace(1 - eps, 1 + eps, 9))**3
energies = []
for v in volumes:
atoms.set_cell([v**(1. / 3)] * 3, scale_atoms=True)
energies.append(atoms.get_potential_energy())
eos = EquationOfState(volumes, energies)
v1, ef, B = eos.fit()
latticeconstant = v1**(1. / 3)
# Calculate the heat of formation by subtracting ef with ei
hof = (ef - ei) / len(atoms)
# Place the calculated parameters in the info dictionary of the
# input_atoms object
input_atoms.info['key_value_pairs']['hof'] = hof
# Raw score must always be set
input_atoms.info['key_value_pairs']['raw_score'] = -hof
input_atoms.info['key_value_pairs']['latticeconstant'] = latticeconstant
# Setting the atoms_string directly for easier analysis
atoms_string = ''.join(input_atoms.get_chemical_symbols())
input_atoms.info['key_value_pairs']['atoms_string'] = atoms_string
示例7: analyse
def analyse(self):
for name, data in self.data.items():
if 'strains' in data:
atoms = self.create_system(name)
volumes = data['strains']**3 * atoms.get_volume()
energies = data['energies']
eos = EquationOfState(volumes, energies)
try:
v, e, B = eos.fit()
except ValueError:
pass
else:
data['fitted energy'] = e
data['volume'] = v
data['B'] = B
示例8: analyse
def analyse(self):
OptimizeTask.analyse(self)
for name, data in self.data.items():
if 'strains' in data:
atoms = self.create_system(name)
volumes = data['strains']**3 * atoms.get_volume()
energies = data['energies']
eos = EquationOfState(volumes, energies)
try:
v, e, B = eos.fit()
except ValueError:
self.results[name].extend([None, None])
else:
self.results[name][1:] = [energies[2] - e, v,
B * 1e24 / units.kJ]
else:
self.results[name].extend([None, None])
示例9: test_calculator
def test_calculator():
"""
Take ASE structure, PySCF object,
and run through ASE calculator interface.
This allows other ASE methods to be used with PySCF;
here we try to compute an equation of state.
"""
ase_atom=Diamond(symbol='C', latticeconstant=3.5668)
# Set up a cell; everything except atom; the ASE calculator will
# set the atom variable
cell = pbcgto.Cell()
cell.h=ase_atom.cell
cell.basis = 'gth-szv'
cell.pseudo = 'gth-pade'
cell.gs=np.array([8,8,8])
cell.verbose = 0
# Set up the kind of calculation to be done
# Additional variables for mf_class are passed through mf_dict
mf_class=pbcdft.RKS
mf_dict = { 'xc' : 'lda,vwn' }
# Once this is setup, ASE is used for everything from this point on
ase_atom.set_calculator(pyscf_ase.PySCF(molcell=cell, mf_class=mf_class, mf_dict=mf_dict))
print "ASE energy", ase_atom.get_potential_energy()
print "ASE energy (should avoid re-evaluation)", ase_atom.get_potential_energy()
# Compute equation of state
ase_cell=ase_atom.cell
volumes = []
energies = []
for x in np.linspace(0.95, 1.2, 5):
ase_atom.set_cell(ase_cell * x, scale_atoms = True)
print "[x: %f, E: %f]" % (x, ase_atom.get_potential_energy())
volumes.append(ase_atom.get_volume())
energies.append(ase_atom.get_potential_energy())
eos = EquationOfState(volumes, energies)
v0, e0, B = eos.fit()
print(B / kJ * 1.0e24, 'GPa')
eos.plot('eos.png')
示例10: analyse
def analyse(self):
for name, data in self.data.items():
if 'strains' in data:
atoms = self.create_system(name)
volumes = data['strains']**3 * atoms.get_volume()
energies = data['energies']
eos = EquationOfState(volumes, energies)
try:
v, e, B = eos.fit()
except ValueError:
pass
else:
data['fitted energy'] = e
data['volume'] = v
data['B'] = B
if abs(v) < min(volumes) or abs(v) > max(volumes):
raise ValueError(name + ': fit outside of range! ' + \
str(abs(v)) + ' not in ' + \
str(volumes))
示例11: eosanal
def eosanal(volumes,energies,CI):
eos=EquationOfState(volumes,energies) #Performs the EOS calcs
v0,e0,B0=eos.fit() #Gives us the values at minimum energy
def func(x): #sets up the function to be solved
return CI-erf(.701707*x)
#Proposes the function dictating the normal random variable
z=fsolve(func,0) #solves for the normal random variable
v=np.power(volumes,-.3333333) #sets up the variable as the one in the EOS
fit3=np.polyder(((np.poly1d(np.polyfit(v,energies,3)))),2)
#Creates an equation that solves for the bulk modulus in the same manner as the EOS
BM=fit3(v)/9*v**5
#solves for the bulk modulus corresponding to each volume value
var=[np.std(volumes),np.std(energies),np.std(BM)]
#solves for the standard deviation of each set of data of interest
SS=[np.count_nonzero(volumes),np.count_nonzero(energies),np.count_nonzero(BM)]
#determines the sample size of each set of data of interest.
R=[z*var[0]*SS[0]**-.5,z*var[1]*SS[1]**-.5,z*var[2]*SS[2]**-.5]
#Determines the radius of the confidence interval
Limits=[v0-R[0],v0+R[0],e0-R[1],e0+R[1],B0-R[2],B0+R[2]]
#sets up each confidence interval
print 'The {0} confidence interval around the volume at minimum energy of the selected structure is between {1} and {2} A^3.The {0} confidence interval around the minimum energy of the selected structure is between {3} and {4} eV.The {0} confidence interval around the bulk modulus of the selected structure is between {5} and {6} eV/A^3 '.format(CI,Limits[0],Limits[1],Limits[2],Limits[3],Limits[4],Limits[5]) #displays the results
return;
示例12: analyse
def analyse(self, atomsfile=None):
try:
BulkTask.analyse(self)
except ValueError: # allow fit outside of range
pass
for name, data in self.data.items():
if 'strains' in data:
atoms = self.create_system(name)
# use relaxed volume if present
if 'relaxed volume' in data:
volume = data['relaxed volume']
else:
volume = atoms.get_volume()
volumes = data['strains']**3 * volume
energies = data['energies']
# allow selection of eos type independent of data
if self.eos is not None:
eos = EquationOfState(volumes, energies, self.eos)
else:
eos = EquationOfState(volumes, energies)
try:
v, e, B = eos.fit()
except ValueError:
pass
else:
data['fitted energy'] = e
data['volume'] = v
data['B'] = B
# with respect tot the reference volume
data['volume error [%]'] = (data['volume'] / atoms.get_volume() - 1) * 100
if self.collection.B:
i = self.collection.labels.index(self.collection.xc) - 1
B = self.collection.B[name][i] * units.kJ * 1e-24
data['B error [%]'] = (data['B'] / B - 1) * 100
else:
data['B error [%]'] = None
data['strukturbericht'] = self.collection.data[name][0]
data['crystal structure'] = strukturbericht[data['strukturbericht']]
# calculate lattice constant from volume
cs = data['crystal structure']
if cs == 'bcc':
a0 = (volume*2)**(1/3.)
a = (data['volume']*2)**(1/3.)
elif cs == 'cesiumchloride':
a0 = (volume)**(1/3.)
a = (data['volume'])**(1/3.)
elif cs in ['fcc',
'diamond',
'zincblende',
'rocksalt',
'fluorite']:
a0 = (volume*4)**(1/3.)
a = (data['volume']*4)**(1/3.)
i = self.collection.labels.index(self.collection.xc) - 1
a0_ref = self.collection.data[name][i]
if 'relaxed volume' not in data:
# no volume relaxation performed - volume equals the reference one
assert abs(a0 - a0_ref) < 1.e-4
data['lattice constant'] = a
data['lattice constant error [%]'] = (a - a0_ref) / a0_ref * 100
if atomsfile:
# MDTMP: TODO
atomdata = read_json(atomsfile)
for name, data in self.data.items():
atoms = self.create_system(name)
e = -data['energy']
for atom in atoms:
e += atomdata[atom.symbol]['energy']
e /= len(atoms)
data['cohesive energy'] = e
if self.collection.xc == 'PBE':
eref = self.collection.data[name][7]
else:
eref = self.collection.data[name][9]
data['cohesive energy error [%]'] = (e / eref - 1) * 100
self.summary_keys += ['cohesive energy',
'cohesive energy error [%]']
示例13: EquationOfState
from ase.units import kJ
from ase.utils.eos import EquationOfState
lestim = lat0
volumes = []
energies = []
elstr=el1+el2+'-'+str
for x in np.linspace(0.98, 1.02, 5):
mys.set_cell(lestim * x, scale_atoms=True)
volumes.append(mys.get_volume()/mys.get_number_of_atoms())
energies.append(mys.get_potential_energy()/mys.get_number_of_atoms())
print "Volumespa:", volumes
print "Energiespa:", energies
eos = EquationOfState(volumes, energies)
vpa1, epa1, B1 = eos.fit()
lpopt1 = pow(vpa1*(n1+n2)/vpc, 1/3.)
print 'vpa1:', vpa1, 'A^3'
print 'epa1:', epa1, 'eV'
print 'B1:', B1 / kJ * 1.0e24, 'GPa'
print 'lpopt1:', lpopt1
#eos.plot(elstr+'-eos.pdf')#,show=True)
if binary == 1:
hof = epa1+esub1*n1/(n1+n2)+esub2*n2/(n1+n2)
else:
hof = epa1/n1-esub1
print "hof1:", hof*1000, "meV/atom\n"
示例14: except
try:
e=atoms.get_potential_energy()
energies.append(e)
ones.append(1)
except (VaspSubmitted,VaspQueued):
ready=False
if not ready:
import sys; sys.exit()
for m in LC:
with jasp('bulk/Cl-{0}'.format(m)) as calc:
atoms=calc.get_atoms()
volumes.append(atoms.get_volume())
# all of the above sets up the problem for the code below. It simply creates an FCC Cl. Changing the above can easily make a different structure.
print volumes
print energies
eos=EquationOfState(volumes,energies) #Performs the EOS calcs
v0,e0,B0=eos.fit() #Gives us the values at minimum energy
CI=.95 #Determines the level of Confidence Interval
def func(x): #sets up the function to be solved
return CI-erf(.701707*x) #Proposes the function dictating the normal random variable
z=fsolve(func,0) #solves for the normal random variable
v=np.power(volumes,-.3333333) #sets up the variable as the one in the EOS
fit3=np.polyder(((np.poly1d(np.polyfit(v,energies,3)))),2) #Creates an equation that solves for the bulk modulus in the same manner as the EOS
BM=fit3(v)/9*v**5 #solves for the bulk modulus corresponding to each volume value
var=[np.std(volumes),np.std(energies),np.std(BM)] #solves for the standard deviation of each set of data of interest
SS=[np.count_nonzero(volumes),np.count_nonzero(energies),np.count_nonzero(BM)] #determines the sample size of each set of data of interest.
R=[z*var[0]*SS[0]**-.5,z*var[1]*SS[1]**-.5,z*var[2]*SS[2]**-.5] #Determines the radius of the confidence interval
Limits=[v0-R[0],v0+R[0],e0-R[1],e0+R[1],B0-R[2],B0+R[2]] #sets up each confidence interval
print 'The {0} confidence interval around the volume at minimum energy of the selected structure is between {1} and {2} A^3.The {0} confidence interval around the minimum energy of the selected structure is between {3} and {4} eV.The {0} confidence interval around the bulk modulus of the selected structure is between {5} and {6} eV/A^3 '.format(CI,Limits[0],Limits[1],Limits[2],Limits[3],Limits[4],Limits[5]) #displays the results#solves for the standard deviation of each set of data of interest
示例15: custom_plot
def custom_plot(volumes, energies, eos):
plot.plot(volumes, energies, 'ro')
x = np.linspace(min(eos.v), max(eos.v), 100)
y = eval(eos.eos_string)(x, eos.eos_parameters[0],
eos.eos_parameters[1],
eos.eos_parameters[2],
eos.eos_parameters[3])
plot.plot(x, y, label='fit')
plot.xlabel('Volume ($\AA^3$)')
plot.ylabel('Energy (eV)')
plot.legend(loc='best')
plot.savefig('eos.png')
# show()
if __name__ == '__main__':
# load from file
# volumes = np.loadtxt('filename')[:,0]
# energies = np.loadtxt('filename')[:,1]
# volumes = np.array([13.72, 14.83, 16.0, 17.23, 18.52])
# energies = np.array([-56.29, -56.41, -56.46, -56.46, -56.42])
volumes, energies = get_e_v('VOLUME')
# eos = 'sjeos', 'murnaghan', 'birch', 'taylor', 'vinet' etc.
eos = EquationOfState(volumes, energies, eos='murnaghan')
v0, e0, B = eos.fit()
# the ASE units for the bulk modulus is eV/Angstrom^3
print('optimum volume, energy and bulk moduls', v0, e0, B)
# plot
eos.plot(filename="eos_fit")
# custom_plot(volumes, energies, eos)