本文整理匯總了Python中ase.neb.NEB類的典型用法代碼示例。如果您正苦於以下問題:Python NEB類的具體用法?Python NEB怎麽用?Python NEB使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
在下文中一共展示了NEB類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: write
def write(self):
method = self.method()
images = self.getOriginalImages()
new_images = []
for i in range(len(images)-1):
initial, final = images[i:i+2]
diff = final.positions - initial.positions
diff = vectorLength(diff, 1)
n_images = int(np.ceil(diff.max()/0.3)) - 1
print 'n_images=%d' % n_images
t_images = [initial]
for j in range(n_images):
temp = t_images[0].copy()
t_images.append(temp)
t_images.append(final)
neb = NEB(t_images)
neb.interpolate()
new_images.extend(neb.images[:-1])
new_images.append(images[-1])
neb = NEB(new_images)
kpts = self.baseTask().parameters().kpts()
self.method().writeNEB(
runfile=self.runFile(),
neb=neb,
kpts=kpts,
)
示例2: run_neb_calculation
def run_neb_calculation(cpu):
images = [PickleTrajectory('H.traj')[-1]]
for i in range(nimages):
images.append(images[0].copy())
images[-1].positions[6, 1] = 2 - images[0].positions[6, 1]
neb = NEB(images, parallel=True, world=cpu)
neb.interpolate()
images[cpu.rank + 1].set_calculator(Calculator())
dyn = BFGS(neb)
dyn.run(fmax=fmax)
if cpu.rank == 1:
results.append(images[2].get_potential_energy())
示例3: get_atoms
def get_atoms():
# 2x2-Al(001) surface with 3 layers and an
# Au atom adsorbed in a hollow site:
slab = fcc100('Al', size=(2, 2, 3))
add_adsorbate(slab, 'Au', 1.7, 'hollow')
slab.center(axis=2, vacuum=4.0)
# Fix second and third layers:
mask = [atom.tag > 1 for atom in slab]
slab.set_constraint(FixAtoms(mask=mask))
# Use EMT potential:
slab.set_calculator(EMT())
# Initial state:
qn = QuasiNewton(slab, logfile=None)
qn.run(fmax=0.05)
initial = slab.copy()
# Final state:
slab[-1].x += slab.get_cell()[0, 0] / 2
qn = QuasiNewton(slab, logfile=None)
qn.run(fmax=0.05)
final = slab.copy()
# Setup a NEB calculation
constraint = FixAtoms(mask=[atom.tag > 1 for atom in initial])
images = [initial]
for i in range(3):
image = initial.copy()
image.set_constraint(constraint)
images.append(image)
images.append(final)
neb = NEB(images, parallel=mpi.parallel)
neb.interpolate()
def set_calculator(calc):
i = 0
for image in neb.images[1:-1]:
if not mpi.parallel or mpi.rank // (mpi.size // 3) == i:
image.set_calculator(calc)
i += 1
neb.set_calculator = set_calculator
return neb
示例4: interp_by_neb
def interp_by_neb(initial, final, n_images, interp='idpp',
calculator=None, constraint=None, fmax=0.5, steps=10,
**kwargs):
"""Interpolate between the initial and final points by NEB method.
:param initial: The initial image.
:param final: The final image.
:param int n_images: The number of image between the initial and final
images.
:param string interp: The interpolation method.
:param Callable calculator: The callable to generate calculators for the
images. It can be set to None if no real optimization is intended.
:param constraint: The constraint for the images.
:param fmax: The maximal force to stop the optimization.
:param steps: The number of optimization steps allowed.
:param kwargs: All other keyword arguments are forwarded to the
initializer of the ASE NEB class.
:return: The list of images between the points.
"""
# To circumvent the error from interpolation when we have no middle images.
if n_images == 0:
return [initial, final]
images = [initial]
for _ in range(n_images):
image = initial.copy()
images.append(image)
if calculator is not None:
image.set_calculator(calculator())
if constraint is not None:
image.set_constraint(constraint)
continue
images.append(final)
neb = NEB(images, **kwargs)
neb.interpolate(method=interp)
if calculator is not None:
dyn = MDMin(neb)
dyn.run(fmax=fmax, steps=steps)
return neb.images
示例5: nebmake
def nebmake(directory, start, final, images, tolerance=0, ci=False, poscar_override=[], linear=False, write=True):
if type(start) == str:
start_POSCAR = os.path.join(start, 'CONTCAR') if os.path.exists(os.path.join(start, 'CONTCAR')) and os.path.getsize(os.path.join(start, 'CONTCAR')) > 0 else os.path.join(start, 'POSCAR')
final_POSCAR = os.path.join(final, 'CONTCAR') if os.path.exists(os.path.join(final, 'CONTCAR')) and os.path.getsize(os.path.join(final, 'CONTCAR')) > 0 else os.path.join(final, 'POSCAR')
p1 = Poscar.from_file(start_POSCAR)
p2 = Poscar.from_file(final_POSCAR)
s1 = p1.structure
s2 = p2.structure
else:
s1 = start
s2 = final
# s1.sort()
# s2.sort()
atoms = []
if poscar_override:
for i in range(int(len(poscar_override)/2)):
atoms.append( (poscar_override[i*2], poscar_override[i*2+1]) )
(s1, s2) = reorganize_structures(s1, s2, atoms=atoms, autosort_tol=tolerance)
tolerance=0
try:
structures = s1.interpolate(s2, images, autosort_tol=tolerance)
except Exception as e:
a=input('Failed. Type y to sort --> ')
if a=='y':
s1.sort()
s2.sort()
else:
raise e
structures = s1.interpolate(s2, images, autosort_tol=tolerance)
if not linear:
from pymatgen.io.ase import AseAtomsAdaptor
from ase.neb import NEB
structures_ase = [ AseAtomsAdaptor.get_atoms(struc) for struc in structures ]
neb = NEB(structures_ase)
neb.interpolate('idpp') # type: NEB
structures = [ AseAtomsAdaptor.get_structure(atoms) for atoms in neb.images ]
if write:
start_OUTCAR = os.path.join(start, 'OUTCAR')
final_OUTCAR = os.path.join(final, 'OUTCAR')
incar = Incar.from_file(os.path.join(start, 'INCAR'))
kpoints = Kpoints.from_file(os.path.join(start, 'KPOINTS'))
potcar = Potcar.from_file(os.path.join(start, 'POTCAR'))
incar['ICHAIN'] = 0
incar['IMAGES'] = images-1
incar['LCLIMB'] = ci
for i, s in enumerate(structures):
folder = os.path.join(directory, str(i).zfill(2))
os.mkdir(folder)
Poscar(s, selective_dynamics=p1.selective_dynamics).write_file(os.path.join(folder, 'POSCAR'))
if i == 0:
shutil.copy(start_OUTCAR, os.path.join(folder, 'OUTCAR'))
if i == images:
shutil.copy(final_OUTCAR, os.path.join(folder, 'OUTCAR'))
i += 1
incar.write_file(os.path.join(directory, 'INCAR'))
kpoints.write_file(os.path.join(directory, 'KPOINTS'))
potcar.write_file(os.path.join(directory, 'POTCAR'))
return structures
示例6: __init__
def __init__(self, images, control, k=1.0, climb=False, parallel=False, minmodes=None, decouple_modes=False):
self.control = control
NEB.__init__(self, images, k, climb, parallel)
self.spring_force = 'full'
# Set up MinModeAtoms objects for each image and make individual logfiles for each
# NB: Shouldn't there be a ERM_Control class that takes care of this crap?
self.images = []
for i in range(self.nimages):
min_control = control.copy()
i_num = ('%0' + str(len(str(self.nimages))) + 'i') % i
d_logfile_old = self.control.get_logfile()
m_logfile_old = self.control.get_eigenmode_logfile()
if d_logfile_old not in ['-', None]:
if type(d_logfile_old) == str:
d_logfile_old = d_logfile_old.split('.')
else:
d_logfile_old = d_logfile_old.name.split('.')
d_logfile_old.insert(-1, i_num)
d_logfile_new = '-'.join(['.'.join(d_logfile_old[:-2]), '.'.join(d_logfile_old[-2:])])
else:
d_logfile_new = d_logfile_old
if m_logfile_old not in ['-', None]:
if type(m_logfile_old) == str:
m_logfile_old = m_logfile_old.split('.')
else:
m_logfile_old = m_logfile_old.name.split('.')
m_logfile_old.insert(-1, i_num)
m_logfile_new = '-'.join(['.'.join(m_logfile_old[:-2]), '.'.join(m_logfile_old[-2:])])
else:
m_logfile_new = m_logfile_old
if i in [0, self.nimages - 1]:
write_rank = 0
else:
write_rank = (i - 1) * size // (self.nimages - 2)
min_control.set_write_rank(write_rank)
min_control.initialize_logfiles(logfile = d_logfile_new, eigenmode_logfile = m_logfile_new)
if minmodes is None:
minmode = None
else:
minmodes = np.array(minmodes)
if minmodes.shape == (self.nimages, self.natoms, 3):
# Assume one minmode for each image
raise NotImplementedError()
elif minmodes.shape == (2, self.natoms, 3):
# Assume end images minmodes and interpolate
raise NotImplementedError()
elif minmodes.shape == (self.natoms, 3):
minmode = [minmodes.copy()]
else:
raise ValueError('ERM did not understand the minmodes given to it.')
image = MinModeAtoms(images[i], min_control, eigenmodes = minmode)
self.images.append(image)
self.forces['dimer'] = np.zeros((self.nimages, self.natoms, 3))
# Populate the tangents
for i in range(1, self.nimages - 1):
p_m = self.images[i - 1].get_positions()
p_p = self.images[i + 1].get_positions()
t = (p_p - p_m) / 2.0
if 0.0 in t:
# Assume a linear interpolation
# HACK/BUG: Currently the last or first "free" image will yield p[-1] - p[0]
t = self.images[-1].get_positions() - self.images[0].get_positions()
t /= (self.nimages - 1.0)
self.tangents[i] = t
self.tangents[0] = t
self.tangents[-1] = -t
# Save user variables
self.decouple_modes = decouple_modes # Release the orthogonality constraint of the minmode and tanget.
# Development stuff
self.plot_devplot = False
self.plot_subplot = False
self.plot_animate = 0
self.plot_x = None
self.plot_y = None
self.plot_e = None
self.xrange = None
self.yrange = None
示例7: read
import os
from ase.io import read
from ase.neb import NEB
from ase.calculators.turbomole import Turbomole
from ase.optimize import BFGS
initial = read('initial.coord')
final = read('final.coord')
os.system('rm -f coord; cp initial.coord coord')
# Make a band consisting of 5 configs:
configs = [initial]
configs += [initial.copy() for i in range(3)]
configs += [final]
band = NEB(configs, climb=True)
# Interpolate linearly the positions of the not-endpoint-configs:
band.interpolate()
#Set calculators
for config in configs:
config.set_calculator(Turbomole())
# Optimize the Path:
relax = BFGS(band, trajectory='neb.traj')
relax.run(fmax=0.05)
示例8: range
initial.set_calculator(LennardJones())
images = [initial]
# Set calculator
for i in range(nimages):
image = initial.copy()
image.set_calculator(LennardJones())
images.append(image)
images.append(final)
# Define the NEB and make a linear interpolation
# with removing translational
# and rotational degrees of freedom
neb = NEB(images,
remove_rotation_and_translation=remove_rotation_and_translation)
neb.interpolate()
# Test used these old defaults which are not optimial, but work
# in this particular system
neb.idpp_interpolate(fmax=0.1, optimizer=BFGS)
qn = FIRE(neb, dt=0.005, maxmove=0.05, dtmax=0.1)
qn.run(steps=20)
# Switch to CI-NEB, still removing the external degrees of freedom
# Also spesify the linearly varying spring constants
neb = NEB(images, climb=True,
remove_rotation_and_translation=remove_rotation_and_translation)
qn = FIRE(neb, dt=0.005, maxmove=0.05, dtmax=0.1)
qn.run(fmax=fmax)
示例9: range
images = [slab]
for i in range(6):
image = slab.copy()
# Set constraints and calculator:
image.set_constraint(constraint)
image.calc = EMT()
images.append(image)
# Displace last image:
image[-2].position = image[-1].position
image[-1].x = d
image[-1].y = d / sqrt(3)
dyn = QuasiNewton(images[-1])
dyn.run(fmax=0.05)
neb = NEB(images, climb=not True)
# Interpolate positions between initial and final states:
neb.interpolate(method='idpp')
for image in images:
print(image.positions[-1], image.get_potential_energy())
dyn = BFGS(neb, maxstep=0.04, trajectory='mep.traj')
dyn.run(fmax=0.05)
for image in images:
print(image.positions[-1], image.get_potential_energy())
if locals().get('display'):
import os
示例10: molecule
from ase.build import molecule
from ase.neb import NEB
initial = molecule('C2H6')
final = initial.copy()
final.positions[2:5] = initial.positions[[3, 4, 2]]
images = [initial]
for i in range(5):
images.append(initial.copy())
images.append(final)
neb = NEB(images)
d0 = images[3].get_distance(2, 3)
neb.interpolate()
d1 = images[3].get_distance(2, 3)
neb.idpp_interpolate(fmax=0.005)
d2 = images[3].get_distance(2, 3)
print(d0, d1, d2)
assert abs(d2 - 1.74) < 0.01
示例11: QuasiNewton
#optimise the initial state
# Atom above step
slab[-1].position = (x3,y2+1,z2+3.5)
final = slab.copy()
final.set_calculator(EMT())
relax = QuasiNewton(final)
relax.run(fmax=0.05)
view(final)
#create a list of images for interpolation
images = [initial]
for i in range(nimages):
images.append(initial.copy())
for image in images:
image.set_calculator(EMT())
images.append(final)
view(images)
#carry out idpp interpolation
neb = NEB(images)
neb.interpolate('idpp')
#Run NEB calculation
qn = QuasiNewton(neb, trajectory='N_diffusion.traj', logfile='N_diffusion.log')
qn.run(fmax=0.05)
示例12: Cu
# Approximate height of Ag atom on Cu(100) surfece:
h0 = 2.2373
initial += Atom('Pt', (10.96, 11.074, h0))
initial += Atom('Pt', (13.7, 11.074, h0))
initial += Atom('Pt', (9.59, 8.701, h0))
initial += Atom('Pt', (12.33, 8.701, h0))
initial += Atom('Pt', (15.07, 8.701, h0))
initial += Atom('Pt', (10.96, 6.328, h0))
initial += Atom('Pt', (13.7, 6.328, h0))
if 0:
view(initial)
# Make band:
images = [initial.copy() for i in range(7)]
neb = NEB(images)
# Set constraints and calculator:
indices = np.compress(initial.positions[:, 2] < -5.0, range(len(initial)))
constraint = FixAtoms(indices)
for image in images:
image.set_calculator(ASAP())
image.constraints.append(constraint)
# Displace last image:
for i in xrange(1,8,1):
images[-1].positions[-i] += (d/2, -h1/3, 0)
write('initial.traj', images[0])
# Relax height of Ag atom for initial and final states:
for image in [images[0], images[-1]]:
示例13: run
def run(self):
'''Run the AutoNEB optimization algorithm.'''
n_cur = self.__initialize__()
while len(self.all_images) < self.n_simul + 2:
if isinstance(self.k, (float, int)):
self.k = [self.k] * (len(self.all_images) - 1)
if self.world.rank == 0:
print('Now adding images for initial run')
# Insert a new image where the distance between two images is
# the largest
spring_lengths = []
for j in range(n_cur - 1):
spring_vec = self.all_images[j + 1].get_positions() - \
self.all_images[j].get_positions()
spring_lengths.append(np.linalg.norm(spring_vec))
jmax = np.argmax(spring_lengths)
if self.world.rank == 0:
print('Max length between images is at ', jmax)
# The interpolation used to make initial guesses
# If only start and end images supplied make all img at ones
if len(self.all_images) == 2:
n_between = self.n_simul
else:
n_between = 1
toInterpolate = [self.all_images[jmax]]
for i in range(n_between):
toInterpolate += [toInterpolate[0].copy()]
toInterpolate += [self.all_images[jmax + 1]]
neb = NEB(toInterpolate)
neb.interpolate(method=self.interpolate_method)
tmp = self.all_images[:jmax + 1]
tmp += toInterpolate[1:-1]
tmp.extend(self.all_images[jmax + 1:])
self.all_images = tmp
# Expect springs to be in equilibrium
k_tmp = self.k[:jmax]
k_tmp += [self.k[jmax] * (n_between + 1)] * (n_between + 1)
k_tmp.extend(self.k[jmax + 1:])
self.k = k_tmp
# Run the NEB calculation with the new image included
n_cur += n_between
# Determine if any images do not have a valid energy yet
energies = self.get_energies()
n_non_valid_energies = len([e for e in energies if e != e])
if self.world.rank == 0:
print('Start of evaluation of the initial images')
while n_non_valid_energies != 0:
if isinstance(self.k, (float, int)):
self.k = [self.k] * (len(self.all_images) - 1)
# First do one run since some energie are non-determined
to_run, climb_safe = self.which_images_to_run_on()
self.execute_one_neb(n_cur, to_run, climb=False)
energies = self.get_energies()
n_non_valid_energies = len([e for e in energies if e != e])
if self.world.rank == 0:
print('Finished initialisation phase.')
# Then add one image at a time until we have n_max images
while n_cur < self.n_max:
if isinstance(self.k, (float, int)):
self.k = [self.k] * (len(self.all_images) - 1)
# Insert a new image where the distance between two images
# is the largest OR where a higher energy reselution is needed
if self.world.rank == 0:
print('****Now adding another image until n_max is reached',
'({0}/{1})****'.format(n_cur, self.n_max))
spring_lengths = []
for j in range(n_cur - 1):
spring_vec = self.all_images[j + 1].get_positions() - \
self.all_images[j].get_positions()
spring_lengths.append(np.linalg.norm(spring_vec))
total_vec = self.all_images[0].get_positions() - \
self.all_images[-1].get_positions()
tl = np.linalg.norm(total_vec)
fR = max(spring_lengths) / tl
e = self.get_energies()
ed = []
emin = min(e)
enorm = max(e) - emin
for j in range(n_cur - 1):
delta_E = (e[j + 1] - e[j]) * (e[j + 1] + e[j] - 2 *
emin) / 2 / enorm
#.........這裏部分代碼省略.........
示例14: execute_one_neb
def execute_one_neb(self, n_cur, to_run, climb=False, many_steps=False):
'''Internal method which executes one NEB optimization.'''
self.iteration += 1
# First we copy around all the images we are not using in this
# neb (for reproducability purposes)
if self.world.rank == 0:
for i in range(n_cur):
if i not in to_run[1: -1]:
filename = '%s%03d.traj' % (self.prefix, i)
self.all_images[i].write(filename)
filename_ref = self.iter_folder + \
'/%s%03diter%03d.traj' % (self.prefix, i,
self.iteration)
if os.path.isfile(filename):
shutil.copy2(filename, filename_ref)
if self.world.rank == 0:
print('Now starting iteration %d on ' % self.iteration, to_run)
# Attach calculators to all the images we will include in the NEB
self.attach_calculators([self.all_images[i] for i in to_run[1: -1]])
neb = NEB([self.all_images[i] for i in to_run],
k=[self.k[i] for i in to_run[0:-1]],
method=self.method,
parallel=self.parallel,
remove_rotation_and_translation=self
.remove_rotation_and_translation,
climb=climb)
# Do the actual NEB calculation
qn = self.optimizer(neb,
logfile=self.iter_folder +
'/%s_log_iter%03d.log' % (self.prefix,
self.iteration))
# Find the ranks which are masters for each their calculation
if self.parallel:
nneb = to_run[0]
nim = len(to_run) - 2
n = self.world.size // nim # number of cpu's per image
j = 1 + self.world.rank // n # my image number
assert nim * n == self.world.size
traj = Trajectory('%s%03d.traj' % (self.prefix, j + nneb), 'w',
self.all_images[j + nneb],
master=(self.world.rank % n == 0))
filename_ref = self.iter_folder + \
'/%s%03diter%03d.traj' % (self.prefix,
j + nneb, self.iteration)
trajhist = Trajectory(filename_ref, 'w',
self.all_images[j + nneb],
master=(self.world.rank % n == 0))
qn.attach(traj)
qn.attach(trajhist)
else:
num = 1
for i, j in enumerate(to_run[1: -1]):
filename_ref = self.iter_folder + \
'/%s%03diter%03d.traj' % (self.prefix, j, self.iteration)
trajhist = Trajectory(filename_ref, 'w', self.all_images[j])
qn.attach(seriel_writer(trajhist, i, num).write)
traj = Trajectory('%s%03d.traj' % (self.prefix, j), 'w',
self.all_images[j])
qn.attach(seriel_writer(traj, i, num).write)
num += 1
if isinstance(self.maxsteps, (list, tuple)) and many_steps:
steps = self.maxsteps[1]
elif isinstance(self.maxsteps, (list, tuple)) and not many_steps:
steps = self.maxsteps[0]
else:
steps = self.maxsteps
if isinstance(self.fmax, (list, tuple)) and many_steps:
fmax = self.fmax[1]
elif isinstance(self.fmax, (list, tuple)) and not many_steps:
fmax = self.fmax[0]
else:
fmax = self.fmax
qn.run(fmax=fmax, steps=steps)
# Remove the calculators and replace them with single
# point calculators and update all the nodes for
# preperration for next iteration
neb.distribute = types.MethodType(store_E_and_F_in_spc, neb)
neb.distribute()
示例15: print
del atoms[5]
print(atoms)
assert len(atoms.constraints[0].index) == 5
fmax = 0.05
nimages = 3
print([a.get_potential_energy() for a in Trajectory('H.traj')])
images = [Trajectory('H.traj')[-1]]
for i in range(nimages):
images.append(images[0].copy())
images[-1].positions[6, 1] = 2 - images[0].positions[6, 1]
neb = NEB(images)
neb.interpolate()
if 0: # verify that initial images make sense
from ase.visualize import view
view(neb.images)
for image in images:
image.set_calculator(MorsePotential())
dyn = BFGS(neb, trajectory='mep.traj') # , logfile='mep.log')
dyn.run(fmax=fmax)
for a in neb.images:
print(a.positions[-1], a.get_potential_energy())