本文整理匯總了Python中apache_beam.metrics.execution.MetricsEnvironment類的典型用法代碼示例。如果您正苦於以下問題:Python MetricsEnvironment類的具體用法?Python MetricsEnvironment怎麽用?Python MetricsEnvironment使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
在下文中一共展示了MetricsEnvironment類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_create_counter_distribution
def test_create_counter_distribution(self):
MetricsEnvironment.set_current_container(MetricsContainer('mystep'))
counter_ns = 'aCounterNamespace'
distro_ns = 'aDistributionNamespace'
gauge_ns = 'aGaugeNamespace'
name = 'a_name'
counter = Metrics.counter(counter_ns, name)
distro = Metrics.distribution(distro_ns, name)
gauge = Metrics.gauge(gauge_ns, name)
counter.inc(10)
counter.dec(3)
distro.update(10)
distro.update(2)
gauge.set(10)
self.assertTrue(isinstance(counter, Metrics.DelegatingCounter))
self.assertTrue(isinstance(distro, Metrics.DelegatingDistribution))
self.assertTrue(isinstance(gauge, Metrics.DelegatingGauge))
del distro
del counter
del gauge
container = MetricsEnvironment.current_container()
self.assertEqual(
container.counters[MetricName(counter_ns, name)].get_cumulative(),
7)
self.assertEqual(
container.distributions[MetricName(distro_ns, name)].get_cumulative(),
DistributionData(12, 2, 2, 10))
self.assertEqual(
container.gauges[MetricName(gauge_ns, name)].get_cumulative().value,
10)
示例2: run_pipeline
def run_pipeline(self, pipeline):
"""Execute the entire pipeline and returns an DirectPipelineResult."""
# TODO: Move imports to top. Pipeline <-> Runner dependency cause problems
# with resolving imports when they are at top.
# pylint: disable=wrong-import-position
from apache_beam.pipeline import PipelineVisitor
from apache_beam.runners.direct.consumer_tracking_pipeline_visitor import \
ConsumerTrackingPipelineVisitor
from apache_beam.runners.direct.evaluation_context import EvaluationContext
from apache_beam.runners.direct.executor import Executor
from apache_beam.runners.direct.transform_evaluator import \
TransformEvaluatorRegistry
from apache_beam.testing.test_stream import TestStream
# Performing configured PTransform overrides.
pipeline.replace_all(_get_transform_overrides(pipeline.options))
# If the TestStream I/O is used, use a mock test clock.
class _TestStreamUsageVisitor(PipelineVisitor):
"""Visitor determining whether a Pipeline uses a TestStream."""
def __init__(self):
self.uses_test_stream = False
def visit_transform(self, applied_ptransform):
if isinstance(applied_ptransform.transform, TestStream):
self.uses_test_stream = True
visitor = _TestStreamUsageVisitor()
pipeline.visit(visitor)
clock = TestClock() if visitor.uses_test_stream else RealClock()
MetricsEnvironment.set_metrics_supported(True)
logging.info('Running pipeline with DirectRunner.')
self.consumer_tracking_visitor = ConsumerTrackingPipelineVisitor()
pipeline.visit(self.consumer_tracking_visitor)
evaluation_context = EvaluationContext(
pipeline._options,
BundleFactory(stacked=pipeline._options.view_as(DirectOptions)
.direct_runner_use_stacked_bundle),
self.consumer_tracking_visitor.root_transforms,
self.consumer_tracking_visitor.value_to_consumers,
self.consumer_tracking_visitor.step_names,
self.consumer_tracking_visitor.views,
clock)
executor = Executor(self.consumer_tracking_visitor.value_to_consumers,
TransformEvaluatorRegistry(evaluation_context),
evaluation_context)
# DirectRunner does not support injecting
# PipelineOptions values at runtime
RuntimeValueProvider.set_runtime_options({})
# Start the executor. This is a non-blocking call, it will start the
# execution in background threads and return.
executor.start(self.consumer_tracking_visitor.root_transforms)
result = DirectPipelineResult(executor, evaluation_context)
return result
示例3: run_pipeline
def run_pipeline(self, pipeline):
"""Execute the entire pipeline and returns an DirectPipelineResult."""
# Performing configured PTransform overrides.
pipeline.replace_all(self._ptransform_overrides)
# TODO: Move imports to top. Pipeline <-> Runner dependency cause problems
# with resolving imports when they are at top.
# pylint: disable=wrong-import-position
from apache_beam.runners.direct.consumer_tracking_pipeline_visitor import \
ConsumerTrackingPipelineVisitor
from apache_beam.runners.direct.evaluation_context import EvaluationContext
from apache_beam.runners.direct.executor import Executor
from apache_beam.runners.direct.transform_evaluator import \
TransformEvaluatorRegistry
MetricsEnvironment.set_metrics_supported(True)
logging.info('Running pipeline with DirectRunner.')
self.consumer_tracking_visitor = ConsumerTrackingPipelineVisitor()
pipeline.visit(self.consumer_tracking_visitor)
clock = TestClock() if self._use_test_clock else RealClock()
evaluation_context = EvaluationContext(
pipeline._options,
BundleFactory(stacked=pipeline._options.view_as(DirectOptions)
.direct_runner_use_stacked_bundle),
self.consumer_tracking_visitor.root_transforms,
self.consumer_tracking_visitor.value_to_consumers,
self.consumer_tracking_visitor.step_names,
self.consumer_tracking_visitor.views,
clock)
evaluation_context.use_pvalue_cache(self._cache)
executor = Executor(self.consumer_tracking_visitor.value_to_consumers,
TransformEvaluatorRegistry(evaluation_context),
evaluation_context)
# DirectRunner does not support injecting
# PipelineOptions values at runtime
RuntimeValueProvider.set_runtime_options({})
# Start the executor. This is a non-blocking call, it will start the
# execution in background threads and return.
executor.start(self.consumer_tracking_visitor.root_transforms)
result = DirectPipelineResult(executor, evaluation_context)
if self._cache:
# We are running in eager mode, block until the pipeline execution
# completes in order to have full results in the cache.
result.wait_until_finish()
self._cache.finalize()
return result
示例4: run
def run(self, pipeline):
"""Execute the entire pipeline and returns an DirectPipelineResult."""
# TODO: Move imports to top. Pipeline <-> Runner dependency cause problems
# with resolving imports when they are at top.
# pylint: disable=wrong-import-position
from apache_beam.runners.direct.consumer_tracking_pipeline_visitor import \
ConsumerTrackingPipelineVisitor
from apache_beam.runners.direct.evaluation_context import EvaluationContext
from apache_beam.runners.direct.executor import Executor
from apache_beam.runners.direct.transform_evaluator import \
TransformEvaluatorRegistry
MetricsEnvironment.set_metrics_supported(True)
logging.info('Running pipeline with DirectRunner.')
self.visitor = ConsumerTrackingPipelineVisitor()
pipeline.visit(self.visitor)
evaluation_context = EvaluationContext(
pipeline.options,
BundleFactory(stacked=pipeline.options.view_as(DirectOptions)
.direct_runner_use_stacked_bundle),
self.visitor.root_transforms,
self.visitor.value_to_consumers,
self.visitor.step_names,
self.visitor.views)
evaluation_context.use_pvalue_cache(self._cache)
executor = Executor(self.visitor.value_to_consumers,
TransformEvaluatorRegistry(evaluation_context),
evaluation_context)
# Start the executor. This is a non-blocking call, it will start the
# execution in background threads and return.
if pipeline.options:
RuntimeValueProvider.set_runtime_options(pipeline.options._options_id, {})
executor.start(self.visitor.root_transforms)
result = DirectPipelineResult(executor, evaluation_context)
if self._cache:
# We are running in eager mode, block until the pipeline execution
# completes in order to have full results in the cache.
result.wait_until_finish()
self._cache.finalize()
# Unset runtime options after the pipeline finishes.
# TODO: Move this to a post finish hook and clean for all cases.
if pipeline.options:
RuntimeValueProvider.unset_runtime_options(pipeline.options._options_id)
return result
示例5: run_pipeline
def run_pipeline(self, pipeline, options):
MetricsEnvironment.set_metrics_supported(False)
RuntimeValueProvider.set_runtime_options({})
# This is sometimes needed if type checking is disabled
# to enforce that the inputs (and outputs) of GroupByKey operations
# are known to be KVs.
from apache_beam.runners.dataflow.dataflow_runner import DataflowRunner
pipeline.visit(DataflowRunner.group_by_key_input_visitor())
self._bundle_repeat = self._bundle_repeat or options.view_as(
pipeline_options.DirectOptions).direct_runner_bundle_repeat
self._profiler_factory = profiler.Profile.factory_from_options(
options.view_as(pipeline_options.ProfilingOptions))
return self.run_via_runner_api(pipeline.to_runner_api(
default_environment=self._default_environment))
示例6: test_create_counter_distribution
def test_create_counter_distribution(self):
sampler = statesampler.StateSampler('', counters.CounterFactory())
statesampler.set_current_tracker(sampler)
state1 = sampler.scoped_state('mystep', 'myState',
metrics_container=MetricsContainer('mystep'))
sampler.start()
with state1:
counter_ns = 'aCounterNamespace'
distro_ns = 'aDistributionNamespace'
name = 'a_name'
counter = Metrics.counter(counter_ns, name)
distro = Metrics.distribution(distro_ns, name)
counter.inc(10)
counter.dec(3)
distro.update(10)
distro.update(2)
self.assertTrue(isinstance(counter, Metrics.DelegatingCounter))
self.assertTrue(isinstance(distro, Metrics.DelegatingDistribution))
del distro
del counter
container = MetricsEnvironment.current_container()
self.assertEqual(
container.counters[MetricName(counter_ns, name)].get_cumulative(),
7)
self.assertEqual(
container.distributions[MetricName(distro_ns, name)].get_cumulative(),
DistributionData(12, 2, 2, 10))
sampler.stop()
示例7: run_pipeline
def run_pipeline(self, pipeline):
MetricsEnvironment.set_metrics_supported(self.has_metrics_support())
# List of map tasks Each map task is a list of
# (stage_name, operation_specs.WorkerOperation) instructions.
self.map_tasks = []
# Map of pvalues to
# (map_task_index, producer_operation_index, producer_output_index)
self.outputs = {}
# Unique mappings of PCollections to strings.
self.side_input_labels = collections.defaultdict(
lambda: str(len(self.side_input_labels)))
# Mapping of map task indices to all map tasks that must preceed them.
self.dependencies = collections.defaultdict(set)
# Visit the graph, building up the map_tasks and their metadata.
super(MapTaskExecutorRunner, self).run_pipeline(pipeline)
# Now run the tasks in topological order.
def compute_depth_map(deps):
memoized = {}
def compute_depth(x):
if x not in memoized:
memoized[x] = 1 + max([-1] + [compute_depth(y) for y in deps[x]])
return memoized[x]
return {x: compute_depth(x) for x in deps.keys()}
map_task_depths = compute_depth_map(self.dependencies)
ordered_map_tasks = sorted((map_task_depths.get(ix, -1), map_task)
for ix, map_task in enumerate(self.map_tasks))
profile_options = pipeline.options.view_as(
pipeline_options.ProfilingOptions)
if profile_options.profile_cpu:
with profiler.Profile(
profile_id='worker-runner',
profile_location=profile_options.profile_location,
log_results=True, file_copy_fn=_dependency_file_copy):
self.execute_map_tasks(ordered_map_tasks)
else:
self.execute_map_tasks(ordered_map_tasks)
return WorkerRunnerResult(PipelineState.UNKNOWN)
示例8: test_scoped_container
def test_scoped_container(self):
c1 = MetricsContainer('mystep')
c2 = MetricsContainer('myinternalstep')
with ScopedMetricsContainer(c1):
self.assertEqual(c1, MetricsEnvironment.current_container())
counter = Metrics.counter('ns', 'name')
counter.inc(2)
with ScopedMetricsContainer(c2):
self.assertEqual(c2, MetricsEnvironment.current_container())
counter = Metrics.counter('ns', 'name')
counter.inc(3)
self.assertEqual(
c2.get_cumulative().counters.items(),
[(MetricKey('myinternalstep', MetricName('ns', 'name')), 3)])
self.assertEqual(c1, MetricsEnvironment.current_container())
counter = Metrics.counter('ns', 'name')
counter.inc(4)
self.assertEqual(
c1.get_cumulative().counters.items(),
[(MetricKey('mystep', MetricName('ns', 'name')), 6)])
示例9: test_uses_right_container
def test_uses_right_container(self):
c1 = MetricsContainer('step1')
c2 = MetricsContainer('step2')
counter = Metrics.counter('ns', 'name')
MetricsEnvironment.set_current_container(c1)
counter.inc()
MetricsEnvironment.set_current_container(c2)
counter.inc(3)
MetricsEnvironment.unset_current_container()
self.assertEqual(
c1.get_cumulative().counters.items(),
[(MetricKey('step1', MetricName('ns', 'name')), 1)])
self.assertEqual(
c2.get_cumulative().counters.items(),
[(MetricKey('step2', MetricName('ns', 'name')), 3)])
示例10: run
def run(self, pipeline):
MetricsEnvironment.set_metrics_supported(self.has_metrics_support())
if pipeline._verify_runner_api_compatible():
return self.run_via_runner_api(pipeline.to_runner_api())
else:
return super(FnApiRunner, self).run(pipeline)
示例11: set
def set(self, value):
container = MetricsEnvironment.current_container()
if container is not None:
container.get_gauge(self.metric_name).set(value)
示例12: update
def update(self, value):
container = MetricsEnvironment.current_container()
if container is not None:
container.get_distribution(self.metric_name).update(value)
示例13: inc
def inc(self, n=1):
container = MetricsEnvironment.current_container()
if container is not None:
container.get_counter(self.metric_name).inc(n)
示例14: test_no_container
def test_no_container(self):
self.assertEqual(MetricsEnvironment.current_container(),
None)
示例15: run_pipeline
def run_pipeline(self, pipeline):
MetricsEnvironment.set_metrics_supported(False)
return self.run_via_runner_api(pipeline.to_runner_api())