本文整理匯總了Python中amico.progressbar.ProgressBar類的典型用法代碼示例。如果您正苦於以下問題:Python ProgressBar類的具體用法?Python ProgressBar怎麽用?Python ProgressBar使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
在下文中一共展示了ProgressBar類的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: generate
def generate( self, out_path, aux, idx_in, idx_out ):
scheme_high = amico.lut.create_high_resolution_scheme( self.scheme, b_scale = 1 )
protocolHR = self.scheme2noddi( scheme_high )
nATOMS = len(self.IC_ODs)*len(self.IC_VFs) + 1
progress = ProgressBar( n=nATOMS, prefix=" ", erase=True )
# Coupled contributions
IC_KAPPAs = 1 / np.tan(self.IC_ODs*np.pi/2)
for kappa in IC_KAPPAs:
signal_ic = self.synth_meas_watson_SH_cyl_neuman_PGSE( np.array([self.dPar*1E-6, 0, kappa]), protocolHR['grad_dirs'], np.squeeze(protocolHR['gradient_strength']), np.squeeze(protocolHR['delta']), np.squeeze(protocolHR['smalldel']), np.array([0,0,1]), 0 )
for v_ic in self.IC_VFs:
dPerp = self.dPar*1E-6 * (1 - v_ic)
signal_ec = self.synth_meas_watson_hindered_diffusion_PGSE( np.array([self.dPar*1E-6, dPerp, kappa]), protocolHR['grad_dirs'], np.squeeze(protocolHR['gradient_strength']), np.squeeze(protocolHR['delta']), np.squeeze(protocolHR['smalldel']), np.array([0,0,1]) )
signal = v_ic*signal_ic + (1-v_ic)*signal_ec
lm = amico.lut.rotate_kernel( signal, aux, idx_in, idx_out, False )
np.save( pjoin( out_path, 'A_%03d.npy'%progress.i) , lm )
progress.update()
# Isotropic
signal = self.synth_meas_iso_GPD( self.dIso*1E-6, protocolHR)
lm = amico.lut.rotate_kernel( signal, aux, idx_in, idx_out, True )
np.save( pjoin( out_path, 'A_%03d.npy'%progress.i) , lm )
progress.update()
示例2: resample
def resample( self, in_path, idx_out, Ylm_out, doMergeB0 ) :
if doMergeB0:
nS = 1+self.scheme.dwi_count
merge_idx = np.hstack((self.scheme.b0_idx[0],self.scheme.dwi_idx))
else:
nS = self.scheme.nS
merge_idx = np.arange(nS)
KERNELS = {}
KERNELS['model'] = self.id
KERNELS['D'] = np.zeros( (len(self.d_perps),181,181,nS), dtype=np.float32 )
KERNELS['CSF'] = np.zeros( (len(self.d_isos),nS), dtype=np.float32 )
nATOMS = len(self.d_perps) + len(self.d_isos)
progress = ProgressBar( n=nATOMS, prefix=" ", erase=True )
# Tensor compartment(s)
for i in xrange(len(self.d_perps)) :
lm = np.load( pjoin( in_path, 'A_%03d.npy'%progress.i ) )
KERNELS['D'][i,...] = amico.lut.resample_kernel( lm, self.scheme.nS, idx_out, Ylm_out, False )[:,:,merge_idx]
progress.update()
# Isotropic compartment(s)
for i in xrange(len(self.d_isos)) :
lm = np.load( pjoin( in_path, 'A_%03d.npy'%progress.i ) )
KERNELS['CSF'][i,...] = amico.lut.resample_kernel( lm, self.scheme.nS, idx_out, Ylm_out, True )[merge_idx]
progress.update()
return KERNELS
示例3: resample
def resample( self, in_path, idx_out, Ylm_out ):
nATOMS = len(self.IC_ODs)*len(self.IC_VFs) + 1
KERNELS = {}
KERNELS['model'] = self.id
KERNELS['wm'] = np.zeros( (nATOMS-1,181,181,self.scheme.nS), dtype=np.float32 )
KERNELS['iso'] = np.zeros( self.scheme.nS, dtype=np.float32 )
KERNELS['kappa'] = np.zeros( nATOMS-1, dtype=np.float32 )
KERNELS['icvf'] = np.zeros( nATOMS-1, dtype=np.float32 )
KERNELS['norms'] = np.zeros( (self.scheme.dwi_count, nATOMS-1) )
progress = ProgressBar( n=nATOMS, prefix=" ", erase=True )
# Coupled contributions
for i in xrange( len(self.IC_ODs) ):
for j in xrange( len(self.IC_VFs) ):
lm = np.load( pjoin( in_path, 'A_%03d.npy'%progress.i ) )
idx = progress.i - 1
KERNELS['wm'][idx,:,:,:] = amico.lut.resample_kernel( lm, self.scheme.nS, idx_out, Ylm_out, False )
KERNELS['kappa'][idx] = 1.0 / np.tan( self.IC_ODs[i]*np.pi/2.0 )
KERNELS['icvf'][idx] = self.IC_VFs[j]
KERNELS['norms'][:,idx] = 1 / np.linalg.norm( KERNELS['wm'][idx,0,0,self.scheme.dwi_idx] ) # norm of coupled atoms (for l1 minimization)
progress.update()
# Isotropic
lm = np.load( pjoin( in_path, 'A_%03d.npy'%progress.i ) )
KERNELS['iso'] = amico.lut.resample_kernel( lm, self.scheme.nS, idx_out, Ylm_out, True )
progress.update()
return KERNELS
示例4: debiasRician
def debiasRician(DWI,SNR,mask,scheme):
debiased_DWI = np.zeros(DWI.shape)
t = time.time()
progress = ProgressBar( n=mask.sum(), prefix=" ", erase=True )
for ix in range(DWI.shape[0]):
for iy in range(DWI.shape[1]):
for iz in range(DWI.shape[2]):
if mask[ix,iy,iz]:
b0 = DWI[ix,iy,iz,scheme.b0_idx].mean()
sigma_diff = b0/SNR
init_guess = DWI[ix,iy,iz,:].copy()
tmp = minimize(F_norm_Diff_K, init_guess, args=(init_guess,sigma_diff), method = 'L-BFGS-B', jac=der_Diff)
debiased_DWI[ix,iy,iz] = tmp.x
progress.update()
print(' [ %s ]' % ( time.strftime("%Hh %Mm %Ss", time.gmtime(time.time()-t) ) ))
return debiased_DWI
示例5: fit
def fit(self):
"""Fit the model to the data iterating over all voxels (in the mask) one after the other.
Call the appropriate fit() method of the actual model used.
"""
if self.niiDWI is None:
raise RuntimeError('Data not loaded; call "load_data()" first.')
if self.model is None:
raise RuntimeError('Model not set; call "set_model()" first.')
if self.KERNELS is None:
raise RuntimeError(
'Response functions not generated; call "generate_kernels()" and "load_kernels()" first.'
)
if self.KERNELS["model"] != self.model.id:
raise RuntimeError("Response functions were not created with the same model.")
self.set_config("fit_time", None)
totVoxels = np.count_nonzero(self.niiMASK_img)
print '\n-> Fitting "%s" model to %d voxels:' % (self.model.name, totVoxels)
# setup fitting directions
peaks_filename = self.get_config("peaks_filename")
if peaks_filename is None:
DIRs = np.zeros(
[self.get_config("dim")[0], self.get_config("dim")[1], self.get_config("dim")[2], 3], dtype=np.float32
)
nDIR = 1
gtab = gradient_table(self.scheme.b, self.scheme.raw[:, :3])
DTI = dti.TensorModel(gtab)
else:
niiPEAKS = nibabel.load(pjoin(self.get_config("DATA_path"), peaks_filename))
DIRs = niiPEAKS.get_data().astype(np.float32)
nDIR = np.floor(DIRs.shape[3] / 3)
print "\t* peaks dim = %d x %d x %d x %d" % DIRs.shape[:4]
if DIRs.shape[:3] != self.niiMASK_img.shape[:3]:
raise ValueError("PEAKS geometry does not match with DWI data")
# setup other output files
MAPs = np.zeros(
[
self.get_config("dim")[0],
self.get_config("dim")[1],
self.get_config("dim")[2],
len(self.model.maps_name),
],
dtype=np.float32,
)
if self.get_config("doComputeNRMSE"):
NRMSE = np.zeros(
[self.get_config("dim")[0], self.get_config("dim")[1], self.get_config("dim")[2]], dtype=np.float32
)
if self.get_config("doSaveCorrectedDWI"):
DWI_corrected = np.zeros(self.niiDWI.shape, dtype=np.float32)
# fit the model to the data
# =========================
t = time.time()
progress = ProgressBar(n=totVoxels, prefix=" ", erase=True)
for iz in xrange(self.niiMASK_img.shape[2]):
for iy in xrange(self.niiMASK_img.shape[1]):
for ix in xrange(self.niiMASK_img.shape[0]):
if self.niiMASK_img[ix, iy, iz] == 0:
continue
# prepare the signal
y = self.niiDWI_img[ix, iy, iz, :].astype(np.float64)
y[y < 0] = 0 # [NOTE] this should not happen!
if self.scheme.b0_count > 0:
b0 = np.mean(y[self.scheme.b0_idx])
if self.get_config("doNormalizeSignal") and self.scheme.b0_count > 0:
if b0 > 1e-3:
y = y / b0
# fitting directions
if peaks_filename is None:
dirs = DTI.fit(y).directions[0]
else:
dirs = DIRs[ix, iy, iz, :]
# dispatch to the right handler for each model
MAPs[ix, iy, iz, :], DIRs[ix, iy, iz, :], x, A = self.model.fit(
y, dirs.reshape(-1, 3), self.KERNELS, self.get_config("solver_params")
)
# compute fitting error
if self.get_config("doComputeNRMSE"):
y_est = np.dot(A, x)
den = np.sum(y ** 2)
NRMSE[ix, iy, iz] = np.sqrt(np.sum((y - y_est) ** 2) / den) if den > 1e-16 else 0
if self.get_config("doSaveCorrectedDWI"):
if self.model.name == "Free-Water":
n_iso = len(self.model.d_isos)
x[-1 * n_iso :] = 0
# print(y, x, b0, A.shape)
#.........這裏部分代碼省略.........
示例6: fit
def fit( self ) :
"""Fit the model to the data iterating over all voxels (in the mask) one after the other.
Call the appropriate fit() method of the actual model used.
"""
if self.niiDWI is None :
raise RuntimeError( 'Data not loaded; call "load_data()" first.' )
if self.model is None :
raise RuntimeError( 'Model not set; call "set_model()" first.' )
if self.KERNELS is None :
raise RuntimeError( 'Response functions not generated; call "generate_kernels()" and "load_kernels()" first.' )
if self.KERNELS['model'] != self.model.id :
raise RuntimeError( 'Response functions were not created with the same model.' )
self.set_config('fit_time', None)
totVoxels = np.count_nonzero(self.niiMASK_img)
print '\n-> Fitting "%s" model to %d voxels:' % ( self.model.name, totVoxels )
# setup fitting directions
peaks_filename = self.get_config('peaks_filename')
if peaks_filename is None :
DIRs = np.zeros( [self.get_config('dim')[0], self.get_config('dim')[1], self.get_config('dim')[2], 3], dtype=np.float32 )
nDIR = 1
gtab = gradient_table( self.scheme.b, self.scheme.raw[:,:3] )
DTI = dti.TensorModel( gtab )
else :
niiPEAKS = nibabel.load( pjoin( self.get_config('DATA_path'), peaks_filename) )
DIRs = niiPEAKS.get_data().astype(np.float32)
nDIR = np.floor( DIRs.shape[3]/3 )
print '\t* peaks dim = %d x %d x %d x %d' % DIRs.shape[:4]
if DIRs.shape[:3] != self.niiMASK_img.shape[:3] :
raise ValueError( 'PEAKS geometry does not match with DWI data' )
# setup other output files
MAPs = np.zeros( [self.get_config('dim')[0], self.get_config('dim')[1], self.get_config('dim')[2], len(self.model.maps_name)], dtype=np.float32 )
if self.get_config('doComputeNRMSE') :
NRMSE = np.zeros( [self.get_config('dim')[0], self.get_config('dim')[1], self.get_config('dim')[2]], dtype=np.float32 )
# fit the model to the data
# =========================
t = time.time()
progress = ProgressBar( n=totVoxels, prefix=" ", erase=True )
for iz in xrange(self.niiMASK_img.shape[2]) :
for iy in xrange(self.niiMASK_img.shape[1]) :
for ix in xrange(self.niiMASK_img.shape[0]) :
if self.niiMASK_img[ix,iy,iz]==0 :
continue
# prepare the signal
y = self.niiDWI_img[ix,iy,iz,:].astype(np.float64)
y[ y < 0 ] = 0 # [NOTE] this should not happen!
if self.get_config('doNormalizeSignal') and self.scheme.b0_count > 0 :
b0 = np.mean( y[self.scheme.b0_idx] )
if b0 > 1e-3 :
y = y / b0
# fitting directions
if peaks_filename is None :
dirs = DTI.fit( y ).directions[0]
else :
dirs = DIRs[ix,iy,iz,:]
# dispatch to the right handler for each model
MAPs[ix,iy,iz,:], DIRs[ix,iy,iz,:], x, A = self.model.fit( y, dirs.reshape(-1,3), self.KERNELS, self.get_config('solver_params') )
# compute fitting error
if self.get_config('doComputeNRMSE') :
y_est = np.dot( A, x )
den = np.sum(y**2)
NRMSE[ix,iy,iz] = np.sqrt( np.sum((y-y_est)**2) / den ) if den > 1e-16 else 0
progress.update()
self.set_config('fit_time', time.time()-t)
print ' [ %s ]' % ( time.strftime("%Hh %Mm %Ss", time.gmtime(self.get_config('fit_time')) ) )
# store results
self.RESULTS = {}
self.RESULTS['DIRs'] = DIRs
self.RESULTS['MAPs'] = MAPs
if self.get_config('doComputeNRMSE') :
self.RESULTS['NRMSE'] = NRMSE