當前位置: 首頁>>代碼示例>>Python>>正文


Python progressbar.ProgressBar類代碼示例

本文整理匯總了Python中amico.progressbar.ProgressBar的典型用法代碼示例。如果您正苦於以下問題:Python ProgressBar類的具體用法?Python ProgressBar怎麽用?Python ProgressBar使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。


在下文中一共展示了ProgressBar類的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: generate

    def generate( self, out_path, aux, idx_in, idx_out ):
        scheme_high = amico.lut.create_high_resolution_scheme( self.scheme, b_scale = 1 )
        protocolHR = self.scheme2noddi( scheme_high )

        nATOMS = len(self.IC_ODs)*len(self.IC_VFs) + 1
        progress = ProgressBar( n=nATOMS, prefix="   ", erase=True )

        # Coupled contributions
        IC_KAPPAs = 1 / np.tan(self.IC_ODs*np.pi/2)
        for kappa in IC_KAPPAs:
            signal_ic = self.synth_meas_watson_SH_cyl_neuman_PGSE( np.array([self.dPar*1E-6, 0, kappa]), protocolHR['grad_dirs'], np.squeeze(protocolHR['gradient_strength']), np.squeeze(protocolHR['delta']), np.squeeze(protocolHR['smalldel']), np.array([0,0,1]), 0 )

            for v_ic in self.IC_VFs:
                dPerp = self.dPar*1E-6 * (1 - v_ic)
                signal_ec = self.synth_meas_watson_hindered_diffusion_PGSE( np.array([self.dPar*1E-6, dPerp, kappa]), protocolHR['grad_dirs'], np.squeeze(protocolHR['gradient_strength']), np.squeeze(protocolHR['delta']), np.squeeze(protocolHR['smalldel']), np.array([0,0,1]) )

                signal = v_ic*signal_ic + (1-v_ic)*signal_ec
                lm = amico.lut.rotate_kernel( signal, aux, idx_in, idx_out, False )
                np.save( pjoin( out_path, 'A_%03d.npy'%progress.i) , lm )
                progress.update()

        # Isotropic
        signal = self.synth_meas_iso_GPD( self.dIso*1E-6, protocolHR)
        lm = amico.lut.rotate_kernel( signal, aux, idx_in, idx_out, True )
        np.save( pjoin( out_path, 'A_%03d.npy'%progress.i) , lm )
        progress.update()
開發者ID:davidrs06,項目名稱:AMICO,代碼行數:26,代碼來源:models.py

示例2: resample

    def resample( self, in_path, idx_out, Ylm_out, doMergeB0 ) :
        if doMergeB0:
            nS = 1+self.scheme.dwi_count
            merge_idx = np.hstack((self.scheme.b0_idx[0],self.scheme.dwi_idx))
        else:
            nS = self.scheme.nS
            merge_idx = np.arange(nS)
        KERNELS = {}
        KERNELS['model'] = self.id
        KERNELS['D']     = np.zeros( (len(self.d_perps),181,181,nS), dtype=np.float32 )
        KERNELS['CSF']   = np.zeros( (len(self.d_isos),nS), dtype=np.float32 )

        nATOMS = len(self.d_perps) + len(self.d_isos)
        progress = ProgressBar( n=nATOMS, prefix="   ", erase=True )

        # Tensor compartment(s)
        for i in xrange(len(self.d_perps)) :
            lm = np.load( pjoin( in_path, 'A_%03d.npy'%progress.i ) )
            KERNELS['D'][i,...] = amico.lut.resample_kernel( lm, self.scheme.nS, idx_out, Ylm_out, False )[:,:,merge_idx]
            progress.update()

        # Isotropic compartment(s)
        for i in xrange(len(self.d_isos)) :
            lm = np.load( pjoin( in_path, 'A_%03d.npy'%progress.i ) )
            KERNELS['CSF'][i,...] = amico.lut.resample_kernel( lm, self.scheme.nS, idx_out, Ylm_out, True )[merge_idx]
            progress.update()

        return KERNELS
開發者ID:davidrs06,項目名稱:AMICO,代碼行數:28,代碼來源:models.py

示例3: resample

    def resample( self, in_path, idx_out, Ylm_out ):
        nATOMS = len(self.IC_ODs)*len(self.IC_VFs) + 1

        KERNELS = {}
        KERNELS['model'] = self.id
        KERNELS['wm']    = np.zeros( (nATOMS-1,181,181,self.scheme.nS), dtype=np.float32 )
        KERNELS['iso']   = np.zeros( self.scheme.nS, dtype=np.float32 )
        KERNELS['kappa'] = np.zeros( nATOMS-1, dtype=np.float32 )
        KERNELS['icvf']  = np.zeros( nATOMS-1, dtype=np.float32 )
        KERNELS['norms'] = np.zeros( (self.scheme.dwi_count, nATOMS-1) )

        progress = ProgressBar( n=nATOMS, prefix="   ", erase=True )

        # Coupled contributions
        for i in xrange( len(self.IC_ODs) ):
            for j in xrange( len(self.IC_VFs) ):
                lm = np.load( pjoin( in_path, 'A_%03d.npy'%progress.i ) )
                idx = progress.i - 1
                KERNELS['wm'][idx,:,:,:] = amico.lut.resample_kernel( lm, self.scheme.nS, idx_out, Ylm_out, False )
                KERNELS['kappa'][idx] = 1.0 / np.tan( self.IC_ODs[i]*np.pi/2.0 )
                KERNELS['icvf'][idx]  = self.IC_VFs[j]
                KERNELS['norms'][:,idx] = 1 / np.linalg.norm( KERNELS['wm'][idx,0,0,self.scheme.dwi_idx] ) # norm of coupled atoms (for l1 minimization)
                progress.update()

        # Isotropic
        lm = np.load( pjoin( in_path, 'A_%03d.npy'%progress.i ) )
        KERNELS['iso'] = amico.lut.resample_kernel( lm, self.scheme.nS, idx_out, Ylm_out, True )
        progress.update()

        return KERNELS
開發者ID:steelec,項目名稱:AMICO,代碼行數:30,代碼來源:models.py

示例4: debiasRician

def debiasRician(DWI,SNR,mask,scheme):
    debiased_DWI = np.zeros(DWI.shape)
    t = time.time()
    progress = ProgressBar( n=mask.sum(), prefix="   ", erase=True )
    for ix in range(DWI.shape[0]):
        for iy in range(DWI.shape[1]):
            for iz in range(DWI.shape[2]):
                if mask[ix,iy,iz]:
                    b0 = DWI[ix,iy,iz,scheme.b0_idx].mean()
                    sigma_diff = b0/SNR
                    init_guess = DWI[ix,iy,iz,:].copy()
                    tmp = minimize(F_norm_Diff_K, init_guess, args=(init_guess,sigma_diff), method = 'L-BFGS-B', jac=der_Diff)
                    debiased_DWI[ix,iy,iz] = tmp.x
                    progress.update()
    print('   [ %s ]' % ( time.strftime("%Hh %Mm %Ss", time.gmtime(time.time()-t) ) ))
    return debiased_DWI
開發者ID:daducci,項目名稱:AMICO,代碼行數:16,代碼來源:preproc.py

示例5: fit

    def fit(self):
        """Fit the model to the data iterating over all voxels (in the mask) one after the other.
        Call the appropriate fit() method of the actual model used.
        """
        if self.niiDWI is None:
            raise RuntimeError('Data not loaded; call "load_data()" first.')
        if self.model is None:
            raise RuntimeError('Model not set; call "set_model()" first.')
        if self.KERNELS is None:
            raise RuntimeError(
                'Response functions not generated; call "generate_kernels()" and "load_kernels()" first.'
            )
        if self.KERNELS["model"] != self.model.id:
            raise RuntimeError("Response functions were not created with the same model.")

        self.set_config("fit_time", None)
        totVoxels = np.count_nonzero(self.niiMASK_img)
        print '\n-> Fitting "%s" model to %d voxels:' % (self.model.name, totVoxels)

        # setup fitting directions
        peaks_filename = self.get_config("peaks_filename")
        if peaks_filename is None:
            DIRs = np.zeros(
                [self.get_config("dim")[0], self.get_config("dim")[1], self.get_config("dim")[2], 3], dtype=np.float32
            )
            nDIR = 1
            gtab = gradient_table(self.scheme.b, self.scheme.raw[:, :3])
            DTI = dti.TensorModel(gtab)
        else:
            niiPEAKS = nibabel.load(pjoin(self.get_config("DATA_path"), peaks_filename))
            DIRs = niiPEAKS.get_data().astype(np.float32)
            nDIR = np.floor(DIRs.shape[3] / 3)
            print "\t* peaks dim = %d x %d x %d x %d" % DIRs.shape[:4]
            if DIRs.shape[:3] != self.niiMASK_img.shape[:3]:
                raise ValueError("PEAKS geometry does not match with DWI data")

        # setup other output files
        MAPs = np.zeros(
            [
                self.get_config("dim")[0],
                self.get_config("dim")[1],
                self.get_config("dim")[2],
                len(self.model.maps_name),
            ],
            dtype=np.float32,
        )

        if self.get_config("doComputeNRMSE"):
            NRMSE = np.zeros(
                [self.get_config("dim")[0], self.get_config("dim")[1], self.get_config("dim")[2]], dtype=np.float32
            )

        if self.get_config("doSaveCorrectedDWI"):
            DWI_corrected = np.zeros(self.niiDWI.shape, dtype=np.float32)

        # fit the model to the data
        # =========================
        t = time.time()
        progress = ProgressBar(n=totVoxels, prefix="   ", erase=True)
        for iz in xrange(self.niiMASK_img.shape[2]):
            for iy in xrange(self.niiMASK_img.shape[1]):
                for ix in xrange(self.niiMASK_img.shape[0]):
                    if self.niiMASK_img[ix, iy, iz] == 0:
                        continue

                    # prepare the signal
                    y = self.niiDWI_img[ix, iy, iz, :].astype(np.float64)
                    y[y < 0] = 0  # [NOTE] this should not happen!

                    if self.scheme.b0_count > 0:
                        b0 = np.mean(y[self.scheme.b0_idx])

                    if self.get_config("doNormalizeSignal") and self.scheme.b0_count > 0:
                        if b0 > 1e-3:
                            y = y / b0

                    # fitting directions
                    if peaks_filename is None:
                        dirs = DTI.fit(y).directions[0]
                    else:
                        dirs = DIRs[ix, iy, iz, :]

                    # dispatch to the right handler for each model
                    MAPs[ix, iy, iz, :], DIRs[ix, iy, iz, :], x, A = self.model.fit(
                        y, dirs.reshape(-1, 3), self.KERNELS, self.get_config("solver_params")
                    )

                    # compute fitting error
                    if self.get_config("doComputeNRMSE"):
                        y_est = np.dot(A, x)
                        den = np.sum(y ** 2)
                        NRMSE[ix, iy, iz] = np.sqrt(np.sum((y - y_est) ** 2) / den) if den > 1e-16 else 0

                    if self.get_config("doSaveCorrectedDWI"):

                        if self.model.name == "Free-Water":
                            n_iso = len(self.model.d_isos)
                            x[-1 * n_iso :] = 0

                            # print(y, x, b0, A.shape)
#.........這裏部分代碼省略.........
開發者ID:yzhizai,項目名稱:AMICO,代碼行數:101,代碼來源:core.py

示例6: fit

    def fit( self ) :
        """Fit the model to the data iterating over all voxels (in the mask) one after the other.
        Call the appropriate fit() method of the actual model used.
        """
        if self.niiDWI is None :
            raise RuntimeError( 'Data not loaded; call "load_data()" first.' )
        if self.model is None :
            raise RuntimeError( 'Model not set; call "set_model()" first.' )
        if self.KERNELS is None :
            raise RuntimeError( 'Response functions not generated; call "generate_kernels()" and "load_kernels()" first.' )
        if self.KERNELS['model'] != self.model.id :
            raise RuntimeError( 'Response functions were not created with the same model.' )

        self.set_config('fit_time', None)
        totVoxels = np.count_nonzero(self.niiMASK_img)
        print '\n-> Fitting "%s" model to %d voxels:' % ( self.model.name, totVoxels )

        # setup fitting directions
        peaks_filename = self.get_config('peaks_filename')
        if peaks_filename is None :
            DIRs = np.zeros( [self.get_config('dim')[0], self.get_config('dim')[1], self.get_config('dim')[2], 3], dtype=np.float32 )
            nDIR = 1
            gtab = gradient_table( self.scheme.b, self.scheme.raw[:,:3] )
            DTI = dti.TensorModel( gtab )
        else :
            niiPEAKS = nibabel.load( pjoin( self.get_config('DATA_path'), peaks_filename) )
            DIRs = niiPEAKS.get_data().astype(np.float32)
            nDIR = np.floor( DIRs.shape[3]/3 )
            print '\t* peaks dim = %d x %d x %d x %d' % DIRs.shape[:4]
            if DIRs.shape[:3] != self.niiMASK_img.shape[:3] :
                raise ValueError( 'PEAKS geometry does not match with DWI data' )

        # setup other output files
        MAPs = np.zeros( [self.get_config('dim')[0], self.get_config('dim')[1], self.get_config('dim')[2], len(self.model.maps_name)], dtype=np.float32 )
        if self.get_config('doComputeNRMSE') :
            NRMSE = np.zeros( [self.get_config('dim')[0], self.get_config('dim')[1], self.get_config('dim')[2]], dtype=np.float32 )

        # fit the model to the data
        # =========================
        t = time.time()
        progress = ProgressBar( n=totVoxels, prefix="   ", erase=True )
        for iz in xrange(self.niiMASK_img.shape[2]) :
            for iy in xrange(self.niiMASK_img.shape[1]) :
                for ix in xrange(self.niiMASK_img.shape[0]) :
                    if self.niiMASK_img[ix,iy,iz]==0 :
                        continue

                    # prepare the signal
                    y = self.niiDWI_img[ix,iy,iz,:].astype(np.float64)
                    y[ y < 0 ] = 0 # [NOTE] this should not happen!

                    if self.get_config('doNormalizeSignal') and self.scheme.b0_count > 0 :
                        b0 = np.mean( y[self.scheme.b0_idx] )
                        if b0 > 1e-3 :
                            y = y / b0

                    # fitting directions
                    if peaks_filename is None :
                        dirs = DTI.fit( y ).directions[0]
                    else :
                        dirs = DIRs[ix,iy,iz,:]

                    # dispatch to the right handler for each model
                    MAPs[ix,iy,iz,:], DIRs[ix,iy,iz,:], x, A = self.model.fit( y, dirs.reshape(-1,3), self.KERNELS, self.get_config('solver_params') )

                    # compute fitting error
                    if self.get_config('doComputeNRMSE') :
                        y_est = np.dot( A, x )
                        den = np.sum(y**2)
                        NRMSE[ix,iy,iz] = np.sqrt( np.sum((y-y_est)**2) / den ) if den > 1e-16 else 0

                    progress.update()

        self.set_config('fit_time', time.time()-t)
        print '   [ %s ]' % ( time.strftime("%Hh %Mm %Ss", time.gmtime(self.get_config('fit_time')) ) )

        # store results
        self.RESULTS = {}
        self.RESULTS['DIRs']  = DIRs
        self.RESULTS['MAPs']  = MAPs
        if self.get_config('doComputeNRMSE') :
            self.RESULTS['NRMSE'] = NRMSE
開發者ID:kylerhodgson,項目名稱:AMICO,代碼行數:82,代碼來源:core.py


注:本文中的amico.progressbar.ProgressBar類示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。