當前位置: 首頁>>代碼示例>>Python>>正文


Python params.Params類代碼示例

本文整理匯總了Python中allennlp.common.params.Params的典型用法代碼示例。如果您正苦於以下問題:Python Params類的具體用法?Python Params怎麽用?Python Params使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。


在下文中一共展示了Params類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: make_vocab_from_params

def make_vocab_from_params(params: Params, serialization_dir: str):
    prepare_environment(params)

    vocab_params = params.pop("vocabulary", {})
    os.makedirs(serialization_dir, exist_ok=True)
    vocab_dir = os.path.join(serialization_dir, "vocabulary")

    if os.path.isdir(vocab_dir) and os.listdir(vocab_dir) is not None:
        raise ConfigurationError("The 'vocabulary' directory in the provided "
                                 "serialization directory is non-empty")

    all_datasets = datasets_from_params(params)
    datasets_for_vocab_creation = set(params.pop("datasets_for_vocab_creation", all_datasets))

    for dataset in datasets_for_vocab_creation:
        if dataset not in all_datasets:
            raise ConfigurationError(f"invalid 'dataset_for_vocab_creation' {dataset}")

    logger.info("From dataset instances, %s will be considered for vocabulary creation.",
                ", ".join(datasets_for_vocab_creation))

    instances = [instance for key, dataset in all_datasets.items()
                 for instance in dataset
                 if key in datasets_for_vocab_creation]

    vocab = Vocabulary.from_params(vocab_params, instances)

    logger.info(f"writing the vocabulary to {vocab_dir}.")
    vocab.save_to_files(vocab_dir)
    logger.info("done creating vocab")
開發者ID:apmoore1,項目名稱:allennlp,代碼行數:30,代碼來源:make_vocab.py

示例2: test_fine_tune_nograd_regex

 def test_fine_tune_nograd_regex(self):
     original_model = load_archive(self.model_archive).model
     name_parameters_original = dict(original_model.named_parameters())
     regex_lists = [[],
                    [".*attend_feedforward.*", ".*token_embedder.*"],
                    [".*compare_feedforward.*"]]
     for regex_list in regex_lists:
         params = Params.from_file(self.config_file)
         params["trainer"]["no_grad"] = regex_list
         shutil.rmtree(self.serialization_dir, ignore_errors=True)
         tuned_model = fine_tune_model(model=original_model,
                                       params=params,
                                       serialization_dir=self.serialization_dir)
         # If regex is matched, parameter name should have requires_grad False
         # If regex is matched, parameter name should have same requires_grad
         # as the originally loaded model
         for name, parameter in tuned_model.named_parameters():
             if any(re.search(regex, name) for regex in regex_list):
                 assert not parameter.requires_grad
             else:
                 assert parameter.requires_grad \
                 == name_parameters_original[name].requires_grad
     # If all parameters have requires_grad=False, then error.
     with pytest.raises(Exception) as _:
         params = Params.from_file(self.config_file)
         params["trainer"]["no_grad"] = ["*"]
         shutil.rmtree(self.serialization_dir, ignore_errors=True)
         tuned_model = fine_tune_model(model=original_model,
                                       params=params,
                                       serialization_dir=self.serialization_dir)
開發者ID:apmoore1,項目名稱:allennlp,代碼行數:30,代碼來源:fine_tune_test.py

示例3: test_simple_tagger_constraint_type_deprecated

 def test_simple_tagger_constraint_type_deprecated(self):
     params = Params({"model": {
             "type": "crf_tagger",
             "constraint_type": "IOB1",
             "text_field_embedder": {
                     "token_embedders": {
                             "tokens": {
                                     "type": "embedding",
                                     "embedding_dim": 50
                             },
                     }
             },
             "encoder": {
                     "type": "gru",
                     "input_size": 50,
                     "hidden_size": 10,
                     "num_layers": 2,
                     "dropout": 0.5,
                     "bidirectional": True
             }}})
     with pytest.warns(DeprecationWarning):
         model = Model.from_params(vocab=self.vocab,
                                   params=params.pop("model"))
     assert model._f1_metric is not None
     assert model._f1_metric._label_encoding == "IOB1"
     assert model.label_encoding == "IOB1"
     assert model.crf._constraint_mask.sum().item() != (model.num_tags + 2)**2
開發者ID:ziaridoy20,項目名稱:allennlp,代碼行數:27,代碼來源:crf_tagger_test.py

示例4: remove_pretrained_embedding_params

def remove_pretrained_embedding_params(params: Params):
    keys = params.keys()
    if 'pretrained_file' in keys:
        del params['pretrained_file']
    for value in params.values():
        if isinstance(value, Params):
            remove_pretrained_embedding_params(value)
開發者ID:pyknife,項目名稱:allennlp,代碼行數:7,代碼來源:model.py

示例5: prepare_environment

def prepare_environment(params: Params):
    """
    Sets random seeds for reproducible experiments. This may not work as expected
    if you use this from within a python project in which you have already imported Pytorch.
    If you use the scripts/run_model.py entry point to training models with this library,
    your experiments should be reasonably reproducible. If you are using this from your own
    project, you will want to call this function before importing Pytorch. Complete determinism
    is very difficult to achieve with libraries doing optimized linear algebra due to massively
    parallel execution, which is exacerbated by using GPUs.

    Parameters
    ----------
    params: Params object or dict, required.
        A ``Params`` object or dict holding the json parameters.
    """
    seed = params.pop_int("random_seed", 13370)
    numpy_seed = params.pop_int("numpy_seed", 1337)
    torch_seed = params.pop_int("pytorch_seed", 133)

    if seed is not None:
        random.seed(seed)
    if numpy_seed is not None:
        numpy.random.seed(numpy_seed)
    if torch_seed is not None:
        torch.manual_seed(torch_seed)
        # Seed all GPUs with the same seed if available.
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(torch_seed)

    log_pytorch_version_info()
開發者ID:pyknife,項目名稱:allennlp,代碼行數:30,代碼來源:util.py

示例6: make_vocab_from_params

def make_vocab_from_params(params: Params):
    prepare_environment(params)

    vocab_params = params.pop("vocabulary", {})
    vocab_dir = vocab_params.get('directory_path')
    if vocab_dir is None:
        raise ConfigurationError("To use `make-vocab` your configuration must contain a value "
                                 "at vocabulary.directory_path")

    os.makedirs(vocab_dir, exist_ok=True)

    all_datasets = datasets_from_params(params)

    datasets_for_vocab_creation = set(params.pop("datasets_for_vocab_creation", all_datasets))

    for dataset in datasets_for_vocab_creation:
        if dataset not in all_datasets:
            raise ConfigurationError(f"invalid 'dataset_for_vocab_creation' {dataset}")

    logger.info("Creating a vocabulary using %s data.", ", ".join(datasets_for_vocab_creation))
    vocab = Vocabulary.from_params(Params({}),
                                   (instance for key, dataset in all_datasets.items()
                                    for instance in dataset
                                    if key in datasets_for_vocab_creation))

    vocab.save_to_files(vocab_dir)
    logger.info("done creating vocab")
開發者ID:Jordan-Sauchuk,項目名稱:allennlp,代碼行數:27,代碼來源:make_vocab.py

示例7: test_known_configs

    def test_known_configs(self):
        configs = os.listdir(self.PROJECT_ROOT / "training_config")

        # Our configs use environment variable substitution, and the _jsonnet parser
        # will fail if we don't pass it correct environment variables.
        forced_variables = [
            # constituency parser
            'PTB_TRAIN_PATH', 'PTB_DEV_PATH', 'PTB_TEST_PATH',

            # srl_elmo_5.5B
            'SRL_TRAIN_DATA_PATH', 'SRL_VALIDATION_DATA_PATH',

            # coref
            'COREF_TRAIN_DATA_PATH', 'COREF_DEV_DATA_PATH', 'COREF_TEST_DATA_PATH',

            # ner
            'NER_TRAIN_DATA_PATH', 'NER_TEST_A_PATH', 'NER_TEST_B_PATH'
        ]

        for var in forced_variables:
            os.environ[var] = os.environ.get(var) or str(self.TEST_DIR)

        for config in configs:
            try:
                Params.from_file(self.PROJECT_ROOT / "training_config" / config)
            except Exception as e:
                raise AssertionError(f"unable to load params for {config}, because {e}")

        for var in forced_variables:
            if os.environ[var] == str(self.TEST_DIR):
                del os.environ[var]
開發者ID:pyknife,項目名稱:allennlp,代碼行數:31,代碼來源:params_test.py

示例8: test_regexes_with_backslashes

    def test_regexes_with_backslashes(self):
        bad_regex = self.TEST_DIR / 'bad_regex.jsonnet'
        good_regex = self.TEST_DIR / 'good_regex.jsonnet'

        with open(bad_regex, 'w') as f:
            f.write(r'{"myRegex": "a\.b"}')

        with open(good_regex, 'w') as f:
            f.write(r'{"myRegex": "a\\.b"}')

        with pytest.raises(RuntimeError):
            Params.from_file(bad_regex)

        params = Params.from_file(good_regex)
        regex = params['myRegex']

        assert re.match(regex, "a.b")
        assert not re.match(regex, "a-b")

        # Check roundtripping
        good_regex2 = self.TEST_DIR / 'good_regex2.jsonnet'
        with open(good_regex2, 'w') as f:
            f.write(json.dumps(params.as_dict()))
        params2 = Params.from_file(good_regex2)

        assert params.as_dict() == params2.as_dict()
開發者ID:pyknife,項目名稱:allennlp,代碼行數:26,代碼來源:params_test.py

示例9: from_params

            def from_params(cls, params: Params) -> 'B':
                params.add_file_to_archive("filename")

                filename = params.pop("filename")
                c_params = params.pop("c")
                c = C.from_params(c_params)

                return cls(filename, c)
開發者ID:pyknife,項目名稱:allennlp,代碼行數:8,代碼來源:params_test.py

示例10: from_params

    def from_params(cls, optimizer: torch.optim.Optimizer, params: Params):  # type: ignore
        # pylint: disable=arguments-differ
        scheduler = params.pop_choice("type", LearningRateScheduler.list_available())

        schedulers = LearningRateScheduler.by_name(scheduler)(optimizer, **params.as_dict())  # type: ignore
        if isinstance(schedulers, torch.optim.lr_scheduler.ReduceLROnPlateau):
            return LearningRateWithMetricsWrapper(schedulers)
        else:
            return LearningRateWithoutMetricsWrapper(schedulers)
開發者ID:apmoore1,項目名稱:allennlp,代碼行數:9,代碼來源:learning_rate_schedulers.py

示例11: test_as_ordered_dict

 def test_as_ordered_dict(self):
     # keyD > keyC > keyE; keyDA > keyDB; Next all other keys alphabetically
     preference_orders = [["keyD", "keyC", "keyE"], ["keyDA", "keyDB"]]
     params = Params({"keyC": "valC", "keyB": "valB", "keyA": "valA", "keyE": "valE",
                      "keyD": {"keyDB": "valDB", "keyDA": "valDA"}})
     ordered_params_dict = params.as_ordered_dict(preference_orders)
     expected_ordered_params_dict = OrderedDict({'keyD': {'keyDA': 'valDA', 'keyDB': 'valDB'},
                                                 'keyC': 'valC', 'keyE': 'valE',
                                                 'keyA': 'valA', 'keyB': 'valB'})
     assert json.dumps(ordered_params_dict) == json.dumps(expected_ordered_params_dict)
開發者ID:pyknife,項目名稱:allennlp,代碼行數:10,代碼來源:params_test.py

示例12: test_to_file

 def test_to_file(self):
     # Test to_file works with or without preference orders
     params_dict = {"keyA": "valA", "keyB": "valB"}
     expected_ordered_params_dict = OrderedDict({"keyB": "valB", "keyA": "valA"})
     params = Params(params_dict)
     file_path = self.TEST_DIR / 'config.jsonnet'
     # check with preference orders
     params.to_file(file_path, [["keyB", "keyA"]])
     with open(file_path, "r") as handle:
         ordered_params_dict = OrderedDict(json.load(handle))
     assert json.dumps(expected_ordered_params_dict) == json.dumps(ordered_params_dict)
     # check without preference orders doesn't give error
     params.to_file(file_path)
開發者ID:pyknife,項目名稱:allennlp,代碼行數:13,代碼來源:params_test.py

示例13: dry_run_from_params

def dry_run_from_params(params: Params, serialization_dir: str) -> None:
    prepare_environment(params)

    vocab_params = params.pop("vocabulary", {})
    os.makedirs(serialization_dir, exist_ok=True)
    vocab_dir = os.path.join(serialization_dir, "vocabulary")

    if os.path.isdir(vocab_dir) and os.listdir(vocab_dir) is not None:
        raise ConfigurationError("The 'vocabulary' directory in the provided "
                                 "serialization directory is non-empty")

    all_datasets = datasets_from_params(params)
    datasets_for_vocab_creation = set(params.pop("datasets_for_vocab_creation", all_datasets))

    for dataset in datasets_for_vocab_creation:
        if dataset not in all_datasets:
            raise ConfigurationError(f"invalid 'dataset_for_vocab_creation' {dataset}")

    logger.info("From dataset instances, %s will be considered for vocabulary creation.",
                ", ".join(datasets_for_vocab_creation))

    instances = [instance for key, dataset in all_datasets.items()
                 for instance in dataset
                 if key in datasets_for_vocab_creation]

    vocab = Vocabulary.from_params(vocab_params, instances)
    dataset = Batch(instances)
    dataset.index_instances(vocab)
    dataset.print_statistics()
    vocab.print_statistics()

    logger.info(f"writing the vocabulary to {vocab_dir}.")
    vocab.save_to_files(vocab_dir)

    model = Model.from_params(vocab=vocab, params=params.pop('model'))
    trainer_params = params.pop("trainer")
    no_grad_regexes = trainer_params.pop("no_grad", ())
    for name, parameter in model.named_parameters():
        if any(re.search(regex, name) for regex in no_grad_regexes):
            parameter.requires_grad_(False)

    frozen_parameter_names, tunable_parameter_names = \
                   get_frozen_and_tunable_parameter_names(model)
    logger.info("Following parameters are Frozen  (without gradient):")
    for name in frozen_parameter_names:
        logger.info(name)
    logger.info("Following parameters are Tunable (with gradient):")
    for name in tunable_parameter_names:
        logger.info(name)
開發者ID:apmoore1,項目名稱:allennlp,代碼行數:49,代碼來源:dry_run.py

示例14: test_from_params

    def test_from_params(self):
        params = Params({"regularizers": [("conv", "l1"), ("linear", {"type": "l2", "alpha": 10})]})
        regularizer_applicator = RegularizerApplicator.from_params(params.pop("regularizers"))
        regularizers = regularizer_applicator._regularizers  # pylint: disable=protected-access

        conv = linear = None
        for regex, regularizer in regularizers:
            if regex == "conv":
                conv = regularizer
            elif regex == "linear":
                linear = regularizer

        assert isinstance(conv, L1Regularizer)
        assert isinstance(linear, L2Regularizer)
        assert linear.alpha == 10
開發者ID:pyknife,項目名稱:allennlp,代碼行數:15,代碼來源:regularizers_test.py

示例15: _load

    def _load(cls,
              config: Params,
              serialization_dir: str,
              weights_file: str = None,
              cuda_device: int = -1) -> 'Model':
        """
        Ensembles don't have vocabularies or weights of their own, so they override _load.
        """
        model_params = config.get('model')

        # The experiment config tells us how to _train_ a model, including where to get pre-trained
        # embeddings from.  We're now _loading_ the model, so those embeddings will already be
        # stored in our weights.  We don't need any pretrained weight file anymore, and we don't
        # want the code to look for it, so we remove it from the parameters here.
        remove_pretrained_embedding_params(model_params)
        model = Model.from_params(vocab=None, params=model_params)

        # Force model to cpu or gpu, as appropriate, to make sure that the embeddings are
        # in sync with the weights
        if cuda_device >= 0:
            model.cuda(cuda_device)
        else:
            model.cpu()

        return model
開發者ID:apmoore1,項目名稱:allennlp,代碼行數:25,代碼來源:ensemble.py


注:本文中的allennlp.common.params.Params類示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。