當前位置: 首頁>>代碼示例>>Python>>正文


Python da.DialogueActConfusionNetwork類代碼示例

本文整理匯總了Python中alex.components.slu.da.DialogueActConfusionNetwork的典型用法代碼示例。如果您正苦於以下問題:Python DialogueActConfusionNetwork類的具體用法?Python DialogueActConfusionNetwork怎麽用?Python DialogueActConfusionNetwork使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。


在下文中一共展示了DialogueActConfusionNetwork類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _build_confusion_network

    def _build_confusion_network(self, sampled_da_items):
        confusion_net = DialogueActConfusionNetwork()
        for da_items, probs in sampled_da_items:
            for dai, prob in zip(da_items, probs):
                confusion_net.add_merge(prob, dai)

        return confusion_net
開發者ID:thanhlct,項目名稱:alex,代碼行數:7,代碼來源:simple_asr_simulator_new.py

示例2: _build_confusion_network

    def _build_confusion_network(self, sampled_da_items):
        '''Build confusion network from a list containing DialgoueActItem and their observation probability.'''
        confusion_net = DialogueActConfusionNetwork()
        for da_items, probs in sampled_da_items:
            for dai, prob in zip(da_items, probs):
                confusion_net.add_merge(prob, dai)

        return confusion_net
開發者ID:thanhlct,項目名稱:alex,代碼行數:8,代碼來源:simple_asr_simulator.py

示例3: test_prune

    def test_prune(self):
        dacn = DialogueActConfusionNetwork()
        dacn.add(0.05, DialogueActItem(dai='inform(food=chinese)'))
        dacn.add(0.9, DialogueActItem(dai='inform(food=czech)'))
        dacn.add(0.00005, DialogueActItem(dai='inform(food=russian)'))

        # Russian food should be pruned.
        self.assertEqual(len(dacn), 3)
        dacn.prune()
        self.assertEqual(len(dacn), 2)
        self.assertTrue(not DialogueActItem(dai='inform(food=russian)') in dacn)
開發者ID:UFAL-DSG,項目名稱:alex,代碼行數:11,代碼來源:test_da.py

示例4: test_get_prob

    def test_get_prob(self):
        dacn = DialogueActConfusionNetwork()
        dacn.add(0.2, DialogueActItem(dai='inform(food=chinese)'))
        dacn.add(0.7, DialogueActItem(dai='inform(food=czech)'))
        dacn.add(0.1, DialogueActItem(dai='inform(food=russian)'))

        self.assertAlmostEqual(dacn._get_prob([0, 1, 1]), 0.2 * 0.3 * 0.9)
        self.assertAlmostEqual(dacn._get_prob([0, 0, 0]), 0.2 * 0.7 * 0.1)
開發者ID:UFAL-DSG,項目名稱:alex,代碼行數:8,代碼來源:test_da.py

示例5: test_sort

    def test_sort(self):
        dacn = DialogueActConfusionNetwork()
        dacn.add(0.05, DialogueActItem(dai='inform(food=chinese)'))
        dacn.add(1.0, DialogueActItem(dai='inform(food=czech)'))
        dacn.add(0.00005, DialogueActItem(dai='inform(food=russian)'))

        dacn.sort()

        cn = list(dacn)
        self.assertEqual(cn[0][1], DialogueActItem(dai='inform(food=czech)'))
        self.assertEqual(cn[1][1], DialogueActItem(dai='inform(food=chinese)'))
        self.assertEqual(cn[2][1], DialogueActItem(dai='inform(food=russian)'))
開發者ID:UFAL-DSG,項目名稱:alex,代碼行數:12,代碼來源:test_da.py

示例6: test_add_merge

    def test_add_merge(self):
        dai = DialogueActItem(dai='inform(food=chinese)')
        dacn = DialogueActConfusionNetwork()
        dacn.add_merge(0.5, dai, combine='add')
        self.assertEqual(dacn._get_prob([0]), 0.5)

        dacn.add_merge(0.5, dai, combine='add')
        self.assertEqual(dacn._get_prob([0]), 1.0)
開發者ID:UFAL-DSG,項目名稱:alex,代碼行數:8,代碼來源:test_da.py

示例7: last_talked_about

    def last_talked_about(self, user_da, system_da):
        """This adds dialogue act items to support inference of the last slots the user talked about."""
        old_user_da = deepcopy(user_da)
        new_user_da = DialogueActConfusionNetwork()

        for prob, user_dai in user_da:
            new_user_dais = []
            lta_tsvs = self.ontology.last_talked_about(user_dai.dat, user_dai.name, user_dai.value)

            for name, value in lta_tsvs:
                new_user_dais.append(DialogueActItem("inform", name, value))

            if new_user_dais:
                for nudai in new_user_dais:
                    new_user_da.add(prob, nudai)

        old_user_da.extend(new_user_da)

        return old_user_da
開發者ID:AoJ,項目名稱:alex,代碼行數:19,代碼來源:dddstate.py

示例8: _infer_last_talked_about_slots

    def _infer_last_talked_about_slots(self, user_da, system_da):
        """This adds dialogue act items to support inference of the last slots the user talked about."""
        old_user_da = deepcopy(user_da)
        new_user_da = DialogueActConfusionNetwork()

        colliding_slots = {}
        done_slots = set()

        for prob, user_dai in user_da:
            new_user_dais = []
            lta_tsvs = self.ontology.last_talked_about(user_dai.dat, user_dai.name, user_dai.value)

            for name, value in lta_tsvs:
                new_user_dais.append(DialogueActItem("inform", name, value))
                if name in done_slots:
                    if not name in colliding_slots:
                        colliding_slots[name] = set()
                    colliding_slots[name].add(value)
                else:
                    done_slots.add(name)

            if new_user_dais:
                for nudai in new_user_dais:
                    if not nudai in new_user_da:
                        new_user_da.add(prob, nudai)

        # In case of collisions, prefer the current last talked about values if it is one of the colliding values.
        # If there is a collision and the current last talked about value is not among the colliding values, do not
        # consider the colliding DA's at all.
        invalid_das = set()
        for prob, da in set(new_user_da):
            if da.name in colliding_slots and self[da.name].mpv() in colliding_slots[da.name]:
                if not da.value == self[da.name].mpv():
                    invalid_das.add(da)
            elif da.name in colliding_slots:
                invalid_das.add(da)

        for invalid_da in invalid_das:
            new_user_da.remove(invalid_da)

        old_user_da.merge(new_user_da, combine='max')

        return old_user_da
開發者ID:UFAL-DSG,項目名稱:alex,代碼行數:43,代碼來源:dddstate.py

示例9: _resolve_user_da_in_context

    def _resolve_user_da_in_context(self, user_da, system_da):
        """Resolves and converts meaning of some user dialogue acts
        given the context."""
        old_user_da = deepcopy(user_da)
        new_user_da = DialogueActConfusionNetwork()

        if isinstance(system_da, DialogueAct):
            for system_dai in system_da:
                for prob, user_dai in user_da:
                    new_user_dai = None

                    if system_dai.dat == "confirm" and user_dai.dat == "affirm":
                        new_user_dai = DialogueActItem("inform", system_dai.name, system_dai.value)

                    elif system_dai.dat == "confirm" and user_dai.dat == "negate":
                        new_user_dai = DialogueActItem("deny", system_dai.name, system_dai.value)

                    elif system_dai.dat == "request" and user_dai.dat == "inform" and \
                                    user_dai.name in self.ontology['context_resolution'] and \
                                    system_dai.name in self.ontology['context_resolution'][user_dai.name] and \
                                    user_dai.value == "dontcare":
                        new_user_dai = DialogueActItem("inform", system_dai.name, system_dai.value)

                    elif system_dai.dat == "request" and user_dai.dat == "inform" and \
                                    user_dai.name in self.ontology['context_resolution'] and \
                                    system_dai.name in self.ontology['context_resolution'][user_dai.name] and \
                                    self.ontology.slot_has_value(system_dai.name, user_dai.value):
                        new_user_dai = DialogueActItem("inform", system_dai.name, user_dai.value)

                    elif system_dai.dat == "request" and system_dai.name != "" and \
                                    user_dai.dat == "affirm" and self.ontology.slot_is_binary(system_dai.name):
                        new_user_dai = DialogueActItem("inform", system_dai.name, "true")

                    elif system_dai.dat == "request" and system_dai.name != "" and \
                                    user_dai.dat == "negate" and self.ontology.slot_is_binary(system_dai.name):
                        new_user_dai = DialogueActItem("inform", system_dai.name, "false")

                    if new_user_dai:
                        new_user_da.add(prob, new_user_dai)

        old_user_da.merge(new_user_da, combine='max')

        return old_user_da
開發者ID:UFAL-DSG,項目名稱:alex,代碼行數:43,代碼來源:dddstate.py

示例10: parse_nblist

    def parse_nblist(self, obs, *args, **kwargs):
        """
        Parses an observation featuring an utterance n-best list using the
        parse_1_best method.

        Arguments:
            obs -- a dictionary of observations
                :: observation type -> observed value
                where observation type is one of values for `obs_type' used in
                `ft_props', and observed value is the corresponding observed
                value for the input
            args -- further positional arguments that should be passed to the
                `parse_1_best' method call
            kwargs -- further keyword arguments that should be passed to the
                `parse_1_best' method call

        """
        nblist = obs['utt_nbl']
        if len(nblist) == 0:
            return DialogueActConfusionNetwork()

        obs_wo_nblist = copy.deepcopy(obs)
        del obs_wo_nblist['utt_nbl']
        dacn_list = []
        for prob, utt in nblist:
            if "_other_" == utt:
                dacn = DialogueActConfusionNetwork()
                dacn.add(1.0, DialogueActItem("other"))
            elif "_silence_" == utt:
                dacn = DialogueActConfusionNetwork()
                dacn.add(1.0, DialogueActItem("silence"))
            else:
                obs_wo_nblist['utt'] = utt
                dacn = self.parse_1_best(obs_wo_nblist, *args, **kwargs)

            dacn_list.append((prob, dacn))

        dacn = merge_slu_confnets(dacn_list)
        dacn.prune()
        dacn.sort()

        return dacn
開發者ID:AoJ,項目名稱:alex,代碼行數:42,代碼來源:base.py

示例11: main

def main():
    # initialize tracker and state
    slots = ["food", "location"]
    tr = DSTCTracker(slots)
    state = DSTCState(slots)
    state.pprint()

    # try to update state with some information
    print '---'
    cn = DialogueActConfusionNetwork()
    cn.add(0.3, DialogueActItem("inform", "food", "chinese"))
    cn.add(0.1, DialogueActItem("inform", "food", "indian"))
    tr.update_state(state, cn)
    state.pprint()

    # try to deny some information
    print '---'
    cn.add(0.9, DialogueActItem("deny", "food", "chinese"))
    cn.add(0.1, DialogueActItem("deny", "food", "indian"))
    tr.update_state(state, cn)
    state.pprint()
開發者ID:AoJ,項目名稱:alex,代碼行數:21,代碼來源:dstc_tracker.py

示例12: test_get_platform_res_da

    def test_get_platform_res_da(self):
        hdc_policy = self._build_policy()

        state = DeterministicDiscriminativeDialogueState(self.cfg, self.ontology)

        system_input = DialogueActConfusionNetwork()

        res = hdc_policy.get_da(state)

        user_input = DialogueActConfusionNetwork()
        user_input.add(1.0, DialogueActItem(dai='info(task=find_platform)'))
        user_input.add(1.0, DialogueActItem(dai='inform(from_stop=Praha)'))
        user_input.add(1.0, DialogueActItem(dai='inform(to_stop=Brno)'))

        state.update(user_input, system_input)
        res = hdc_policy.get_da(state)

        self.assert_('inform(not_supported)' in res)
開發者ID:UFAL-DSG,項目名稱:alex,代碼行數:18,代碼來源:test_hdc_policy.py

示例13: process_pending_commands

    def process_pending_commands(self):
        """Process all pending commands.

        Available commands:
          stop() - stop processing and exit the process
          flush() - flush input buffers.
            Now it only flushes the input connection.

        Return True if the process should terminate.
        """

        while self.commands.poll():
            command = self.commands.recv()

            if self.cfg['DM']['debug']:
                self.cfg['Logging']['system_logger'].debug(command)

            if isinstance(command, Command):
                #Thanh:
                if command.parsed['__name__'] == 'print_log_dir':
                    print '===***===session-log-dir:', command.source

                if command.parsed['__name__'] == 'stop':
                    return True

                if command.parsed['__name__'] == 'flush':
                    # discard all data in in input buffers
                    while self.slu_hypotheses_in.poll():
                        data_in = self.slu_hypotheses_in.recv()

                    self.dm.end_dialogue()

                    self.commands.send(Command("flushed()", 'DM', 'HUB'))
                    
                    return False

                #if command.parsed['__name__'] == 'prepare_new_dialogue':
                    #self.dm.new_dialogue()

                if command.parsed['__name__'] == 'new_dialogue':
                    self.dm.new_dialogue()#thanh change???

                    self.epilogue_state = None

                    self.cfg['Logging']['session_logger'].turn("system")
                    self.dm.log_state()

                    # I should generate the first DM output
                    da = self.dm.da_out()

                    if self.cfg['DM']['debug']:
                        s = []
                        s.append("DM Output")
                        s.append("-"*60)
                        s.append(unicode(da))
                        s.append("")
                        s = '\n'.join(s)
                        self.cfg['Logging']['system_logger'].debug(s)

                    self.cfg['Logging']['session_logger'].dialogue_act("system", da)

                    self.commands.send(DMDA(da, 'DM', 'HUB'))

                    return False

                if command.parsed['__name__'] == 'end_dialogue':
                    self.dm.end_dialogue()
                    return False

                if command.parsed['__name__'] == 'timeout':
                    # check whether there is a looong silence
                    # if yes then inform the DM

                    silence_time = command.parsed['silence_time']

                    cn = DialogueActConfusionNetwork()
                    cn.add(1.0, DialogueActItem('silence','time', silence_time))

                    # process the input DA
                    self.dm.da_in(cn)

                    self.cfg['Logging']['session_logger'].turn("system")
                    self.dm.log_state()

                    print '----Time out: ', self.epilogue_state, silence_time
                    '''Thanh
                    if self.epilogue_state == 'give_code':
                        # an cant_apply act have been chosen
                        self.cfg['Logging']['session_logger'].dialogue_act("system", self.epilogue_da)
                        self.commands.send(DMDA(self.epilogue_da, 'DM', 'HUB'))
                        self.commands.send(Command('hangup()', 'DM', 'HUB'))
                        return False
                    #'''
                        
                    if self.epilogue_state and float(silence_time) > 5.0: 
                        if self.epilogue_state == 'final_question': # and self.final_question_repeated<16:
                            da = DialogueAct('say(text="{text}")'.format(text="Sorry, did you get the correct information?"))
                            #self.final_question_repeated += 1
                            self.cfg['Logging']['session_logger'].dialogue_act("system", da)
                            self.commands.send(DMDA(da, 'DM', 'HUB'))
#.........這裏部分代碼省略.........
開發者ID:thanhlct,項目名稱:alex,代碼行數:101,代碼來源:dm.py

示例14: parse_1_best

    def parse_1_best(self, obs, verbose=False, *args, **kwargs):
        """Parse an utterance into a dialogue act.

        :rtype DialogueActConfusionNetwork
        """

        utterance = obs['utt']

        if isinstance(utterance, UtteranceHyp):
            # Parse just the utterance and ignore the confidence score.
            utterance = utterance.utterance

        if verbose:
            print 'Parsing utterance "{utt}".'.format(utt=utterance)

        res_cn = DialogueActConfusionNetwork()

        dict_da = self.utt2da.get(unicode(utterance), None)
        if dict_da:
            for dai in DialogueAct(dict_da):
                res_cn.add(1.0, dai)
            return res_cn

        utterance = self.preprocessing.normalise_utterance(utterance)
        abutterance, category_labels = self.abstract_utterance(utterance)

        if verbose:
            print 'After preprocessing: "{utt}".'.format(utt=abutterance)
            print category_labels

        self.parse_non_speech_events(utterance, res_cn)

        utterance = utterance.replace_all(['_noise_'], '').replace_all(['_laugh_'], '').replace_all(['_ehm_hmm_'], '').replace_all(['_inhale_'], '')
        abutterance = abutterance.replace_all(['_noise_'], '').replace_all(['_laugh_'], '').replace_all(['_ehm_hmm_'], '').replace_all(['_inhale_'], '')

        abutterance = self.handle_false_abstractions(abutterance)
        category_labels.add('CITY')
        category_labels.add('VEHICLE')
        category_labels.add('NUMBER')

        if len(res_cn) == 0:
            if 'STOP' in category_labels:
                self.parse_stop(abutterance, res_cn)
            if 'CITY' in category_labels:
                self.parse_city(abutterance, res_cn)
            if 'NUMBER' in category_labels:
                self.parse_number(abutterance)
                if any([word.startswith("TIME") for word in abutterance]):
                    category_labels.add('TIME')
            if 'TIME' in category_labels:
                self.parse_time(abutterance, res_cn)
            if 'DATE_REL' in category_labels:
                self.parse_date_rel(abutterance, res_cn)
            if 'AMPM' in category_labels:
                self.parse_ampm(abutterance, res_cn)
            if 'VEHICLE' in category_labels:
                self.parse_vehicle(abutterance, res_cn)
            if 'TASK' in category_labels:
                self.parse_task(abutterance, res_cn)

            self.parse_meta(utterance, res_cn)

        res_cn.merge()

        return res_cn
開發者ID:beka-evature,項目名稱:alex,代碼行數:65,代碼來源:hdc_slu.py

示例15: parse_1_best

    def parse_1_best(self, obs, verbose=False):
        """Parse an utterance into a dialogue act."""
        utterance = obs['utt']

        if isinstance(utterance, UtteranceHyp):
            # Parse just the utterance and ignore the confidence score.
            utterance = utterance.utterance

        # print 'Parsing utterance "{utt}".'.format(utt=utterance)
        if verbose:
            print 'Parsing utterance "{utt}".'.format(utt=utterance)

        if self.preprocessing:
            # the text normalisation
            utterance = self.preprocessing.normalise_utterance(utterance)

            abutterance, category_labels = self.abstract_utterance(utterance)

            if verbose:
                print 'After preprocessing: "{utt}".'.format(utt=abutterance)
                print category_labels
        else:
            category_labels = dict()

        # handle false positive alarms of abstraction
        abutterance = abutterance.replace(('STOP=Metra',), ('metra',))
        abutterance = abutterance.replace(('STOP=Nádraží',), ('nádraží',))
        abutterance = abutterance.replace(('STOP=SME',), ('sme',))
        abutterance = abutterance.replace(('STOP=Bílá Hora', 'STOP=Železniční stanice',), ('STOP=Bílá Hora', 'železniční stanice',))

        abutterance = abutterance.replace(('TIME=now','bych', 'chtěl'), ('teď', 'bych', 'chtěl'))
        abutterance = abutterance.replace(('STOP=Čím','se'), ('čím', 'se',))
        abutterance = abutterance.replace(('STOP=Lužin','STOP=Na Chmelnici',), ('STOP=Lužin','na','STOP=Chmelnici',))
        abutterance = abutterance.replace(('STOP=Konečná','zastávka'), ('konečná', 'zastávka',))
        abutterance = abutterance.replace(('STOP=Konečná','STOP=Anděl'), ('konečná', 'STOP=Anděl',))
        abutterance = abutterance.replace(('STOP=Konečná stanice','STOP=Ládví'), ('konečná', 'stanice', 'STOP=Ládví',))
        abutterance = abutterance.replace(('STOP=Výstupní', 'stanice', 'je'), ('výstupní', 'stanice', 'je'))
        abutterance = abutterance.replace(('STOP=Nová','jiné'), ('nové', 'jiné',))
        abutterance = abutterance.replace(('STOP=Nová','spojení'), ('nové', 'spojení',))
        abutterance = abutterance.replace(('STOP=Nová','zadání'), ('nové', 'zadání',))
        abutterance = abutterance.replace(('STOP=Nová','TASK=find_connection'), ('nový', 'TASK=find_connection',))
        abutterance = abutterance.replace(('z','CITY=Liberk',), ('z', 'CITY=Liberec',))
        abutterance = abutterance.replace(('do','CITY=Liberk',), ('do', 'CITY=Liberec',))
        abutterance = abutterance.replace(('pauza','hrozně','STOP=Dlouhá',), ('pauza','hrozně','dlouhá',))
        abutterance = abutterance.replace(('v','STOP=Praga',), ('v', 'CITY=Praha',))
        abutterance = abutterance.replace(('na','STOP=Praga',), ('na', 'CITY=Praha',))
        abutterance = abutterance.replace(('po','STOP=Praga', 'ale'), ('po', 'CITY=Praha',))
        abutterance = abutterance.replace(('jsem','v','STOP=Metra',), ('jsem', 'v', 'VEHICLE=metro',))
        category_labels.add('CITY')
        category_labels.add('VEHICLE')

        # print 'After preprocessing: "{utt}".'.format(utt=abutterance)
        # print category_labels

        res_cn = DialogueActConfusionNetwork()

        self.parse_non_speech_events(utterance, res_cn)

        if len(res_cn) == 0:
            # remove non speech events, they are not relevant for SLU
            abutterance = abutterance.replace_all('_noise_', '').replace_all('_laugh_', '').replace_all('_ehm_hmm_', '').replace_all('_inhale_', '')

            if 'STOP' in category_labels:
                self.parse_stop(abutterance, res_cn)
            if 'CITY' in category_labels:
                self.parse_city(abutterance, res_cn)
            if 'TIME' in category_labels:
                self.parse_time(abutterance, res_cn)
            if 'DATE_REL' in category_labels:
                self.parse_date_rel(abutterance, res_cn)
            if 'AMPM' in category_labels:
                self.parse_ampm(abutterance, res_cn)
            if 'VEHICLE' in category_labels:
                self.parse_vehicle(abutterance, res_cn)
            if 'TASK' in category_labels:
                self.parse_task(abutterance, res_cn)

            self.parse_meta(utterance, res_cn)

        res_cn.merge()

        return res_cn
開發者ID:elnaaz,項目名稱:alex,代碼行數:82,代碼來源:hdc_slu.py


注:本文中的alex.components.slu.da.DialogueActConfusionNetwork類示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。