當前位置: 首頁>>代碼示例>>Python>>正文


Python AbsoluteAlchemicalFactory.createPerturbedSystems方法代碼示例

本文整理匯總了Python中alchemy.AbsoluteAlchemicalFactory.createPerturbedSystems方法的典型用法代碼示例。如果您正苦於以下問題:Python AbsoluteAlchemicalFactory.createPerturbedSystems方法的具體用法?Python AbsoluteAlchemicalFactory.createPerturbedSystems怎麽用?Python AbsoluteAlchemicalFactory.createPerturbedSystems使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在alchemy.AbsoluteAlchemicalFactory的用法示例。


在下文中一共展示了AbsoluteAlchemicalFactory.createPerturbedSystems方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: range

# 需要導入模塊: from alchemy import AbsoluteAlchemicalFactory [as 別名]
# 或者: from alchemy.AbsoluteAlchemicalFactory import createPerturbedSystems [as 別名]
print "Creating alchemical intermediates..."
alchemical_atoms = range(nfixed) # atoms to be alchemically modified

alchemical_states = list() # alchemical_states[istate] is the alchemical state lambda specification for alchemical state 'istate'

# Create alchemical states where we turn on Lennard-Jones (via softcore) with zero charge.
for vdw_lambda in vdw_lambdas:
    alchemical_states.append( AlchemicalState(coulomb_lambda=0.0, vdw_lambda=vdw_lambda, annihilate_coulomb=True, annihilate_vdw=True) )

# Create alchemical states where we turn on charges with full Lennard-Jones.
for coulomb_lambda in coulomb_lambdas:
    alchemical_states.append( AlchemicalState(coulomb_lambda=coulomb_lambda, vdw_lambda=1.0, annihilate_coulomb=True, annihilate_vdw=True) )

alchemical_factory = AbsoluteAlchemicalFactory(reference_system, alchemical_atoms=alchemical_atoms)
systems = alchemical_factory.createPerturbedSystems(alchemical_states) # systems[istate] will be the System object corresponding to alchemical intermediate state index 'istate'
nstates = len(systems)

#==============================================================================
# Run simulation.
#==============================================================================

# Initialize NetCDF file to store data.
import netCDF4 as netcdf 
ncfile = netcdf.Dataset(filename, 'w', version='NETCDF4')
ncfile.createDimension('iteration', 0) # unlimited number of iterations
ncfile.createDimension('state', nstates) # number of replicas
ncfile.createDimension('atom', reference_system.getNumParticles()) # number of atoms in system
ncfile.createDimension('spatial', 3) # number of spatial dimensions
ncfile.createVariable('positions', 'f', ('iteration','state','atom','spatial')) # positions (in A)
ncfile.createVariable('box_vectors', 'f', ('iteration','state','spatial','spatial')) # box vectors (in A)
開發者ID:choderalab,項目名稱:ring-open-fep,代碼行數:32,代碼來源:simulate.py

示例2: _create_phase

# 需要導入模塊: from alchemy import AbsoluteAlchemicalFactory [as 別名]
# 或者: from alchemy.AbsoluteAlchemicalFactory import createPerturbedSystems [as 別名]
    def _create_phase(self, phase, reference_system, positions, atom_indices, thermodynamic_state, protocols=None, options=None, mpicomm=None):
        """
        Create a repex object for a specified phase.

        Parameters
        ----------
        phase : str
           The phase being initialized (one of ['complex', 'solvent', 'vacuum'])
        reference_system : simtk.openmm.System
           The reference system object from which alchemical intermediates are to be construcfted.
        positions : list of simtk.unit.Qunatity objects containing (natoms x 3) positions (as np or lists)
           The list of positions to be used to seed replicas in a round-robin way.
        atom_indices : dict
           atom_indices[phase][component] is the set of atom indices associated with component, where component is ['ligand', 'receptor']
        thermodynamic_state : ThermodynamicState
           Thermodynamic state from which reference temperature and pressure are to be taken.
        protocols : dict of list of AlchemicalState, optional, default=None
           If specified, the alchemical protocol protocols[phase] will be used for phase 'phase' instead of the default.
        options : dict of str, optional, default=None
           If specified, these options will override default repex simulation options.

        """

        # Make sure positions argument is a list of coordinate snapshots.
        if hasattr(positions, 'unit'):
            # Wrap in list.
            positions = [positions]

        # Check the dimensions of positions.
        for index in range(len(positions)):
            # Make sure it is recast as a np array.
            positions[index] = unit.Quantity(np.array(positions[index] / positions[index].unit), positions[index].unit)

            [natoms, ndim] = (positions[index] / positions[index].unit).shape
            if natoms != reference_system.getNumParticles():
                raise Exception("positions argument must be a list of simtk.unit.Quantity of (natoms,3) lists or np array with units compatible with nanometers.")

        # Create metadata storage.
        metadata = dict()

        # Make a deep copy of the reference system so we don't accidentally modify it.
        reference_system = copy.deepcopy(reference_system)

        # TODO: Use more general approach to determine whether system is periodic.
        is_periodic = self._is_periodic(reference_system)

        # Make sure pressure is None if not periodic.
        if not is_periodic: thermodynamic_state.pressure = None

        # Compute standard state corrections for complex phase.
        metadata['standard_state_correction'] = 0.0
        # TODO: Do we need to include a standard state correction for other phases in periodic boxes?
        if phase == 'complex-implicit':
            # Impose restraints for complex system in implicit solvent to keep ligand from drifting too far away from receptor.
            if self.verbose: print "Creating receptor-ligand restraints..."
            reference_positions = positions[0]
            if self.restraint_type == 'harmonic':
                restraints = HarmonicReceptorLigandRestraint(thermodynamic_state, reference_system, reference_positions, atom_indices['receptor'], atom_indices['ligand'])
            elif self.restraint_type == 'flat-bottom':
                restraints = FlatBottomReceptorLigandRestraint(thermodynamic_state, reference_system, reference_positions, atom_indices['receptor'], atom_indices['ligand'])
            else:
                raise Exception("restraint_type of '%s' is not supported." % self.restraint_type)

            force = restraints.getRestraintForce() # Get Force object incorporating restraints
            reference_system.addForce(force)
            metadata['standard_state_correction'] = restraints.getStandardStateCorrection() # standard state correction in kT
        elif phase == 'complex-explicit':
            # For periodic systems, we do not use a restraint, but must add a standard state correction for the box volume.
            # TODO: What if the box volume fluctuates during the simulation?
            box_vectors = reference_system.getDefaultPeriodicBoxVectors()
            box_volume = thermodynamic_state._volume(box_vectors)
            STANDARD_STATE_VOLUME = 1660.53928 * unit.angstrom**3
            metadata['standard_state_correction'] = np.log(STANDARD_STATE_VOLUME / box_volume) # TODO: Check sign.

        # Use default alchemical protocols if not specified.
        if not protocols:
            protocols = self.default_protocols

        # Create alchemically-modified states using alchemical factory.
        if self.verbose: print "Creating alchemically-modified states..."
        factory = AbsoluteAlchemicalFactory(reference_system, ligand_atoms=atom_indices['ligand'])
        systems = factory.createPerturbedSystems(protocols[phase])

        # Randomize ligand position if requested, but only for implicit solvent systems.
        if self.randomize_ligand and (phase == 'complex-implicit'):
            if self.verbose: print "Randomizing ligand positions and excluding overlapping configurations..."
            randomized_positions = list()
            nstates = len(systems)
            for state_index in range(nstates):
                positions_index = np.random.randint(0, len(positions))
                current_positions = positions[positions_index]
                new_positions = ModifiedHamiltonianExchange.randomize_ligand_position(current_positions,
                                                                                      atom_indices['receptor'], atom_indices['ligand'],
                                                                                      self.randomize_ligand_sigma_multiplier * restraints.getReceptorRadiusOfGyration(),
                                                                                      self.randomize_ligand_close_cutoff)
                randomized_positions.append(new_positions)
            positions = randomized_positions
        if self.randomize_ligand and (phase == 'complex-explicit'):
            print "WARNING: Ligand randomization requested, but will not be performed for explicit solvent simulations."

#.........這裏部分代碼省略.........
開發者ID:kmvisscher,項目名稱:yank,代碼行數:103,代碼來源:yank.py

示例3: range

# 需要導入模塊: from alchemy import AbsoluteAlchemicalFactory [as 別名]
# 或者: from alchemy.AbsoluteAlchemicalFactory import createPerturbedSystems [as 別名]
#!/usr/bin/env python

"""
Create alchemical intermediates for default alchemical protocol for p-xylene in T4 lysozyme L99A in GBSA.

"""

from alchemy import AbsoluteAlchemicalFactory
from openmmtools import testsystems

# Create a reference system.
print "Creating a reference T4 lysozyme L99A system..."
complex = testsystems.LysozymeImplicit()
[reference_system, positions] = [complex.system, complex.positions]

# Create a factory to produce alchemical intermediates.
print "Creating an alchemical factory..."
receptor_atoms = range(0,2603) # T4 lysozyme L99A
ligand_atoms = range(2603,2621) # p-xylene
factory = AbsoluteAlchemicalFactory(reference_system, ligand_atoms=ligand_atoms)

# Get the default protocol for 'denihilating' in complex in explicit solvent.
protocol = factory.defaultComplexProtocolImplicit()

# Create the perturbed systems using this protocol.
print "Creating a perturbed system..."
systems = factory.createPerturbedSystems(protocol)
print "Done."
開發者ID:choderalab,項目名稱:cecam-2015-julich-workshop,代碼行數:30,代碼來源:alchemical-T4-lysozyme.py


注:本文中的alchemy.AbsoluteAlchemicalFactory.createPerturbedSystems方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。