當前位置: 首頁>>代碼示例>>Python>>正文


Python hive_hooks.HiveCliHook類代碼示例

本文整理匯總了Python中airflow.hooks.hive_hooks.HiveCliHook的典型用法代碼示例。如果您正苦於以下問題:Python HiveCliHook類的具體用法?Python HiveCliHook怎麽用?Python HiveCliHook使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。


在下文中一共展示了HiveCliHook類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: execute

    def execute(self, context):
        hive = HiveCliHook(hive_cli_conn_id=self.hive_cli_conn_id)
        logging.info("Extracting data from Hive")
        hive_table = "druid." + context["task_instance_key_str"].replace(".", "_")
        sql = self.sql.strip().strip(";")
        hql = """\
        set mapred.output.compress=false;
        set hive.exec.compress.output=false;
        DROP TABLE IF EXISTS {hive_table};
        CREATE TABLE {hive_table}
        ROW FORMAT DELIMITED FIELDS TERMINATED BY  '\t'
        STORED AS TEXTFILE
        TBLPROPERTIES ('serialization.null.format' = '')
        AS
        {sql}
        """.format(
            **locals()
        )
        logging.info("Running command:\n {}".format(hql))
        hive.run_cli(hql)

        m = HiveMetastoreHook(self.metastore_conn_id)
        t = m.get_table(hive_table)

        columns = [col.name for col in t.sd.cols]

        hdfs_uri = m.get_table(hive_table).sd.location
        pos = hdfs_uri.find("/user")
        static_path = hdfs_uri[pos:]

        schema, table = hive_table.split(".")

        druid = DruidHook(druid_ingest_conn_id=self.druid_ingest_conn_id)
        logging.info("Inserting rows into Druid")
        logging.info("HDFS path: " + static_path)

        try:
            druid.load_from_hdfs(
                datasource=self.druid_datasource,
                intervals=self.intervals,
                static_path=static_path,
                ts_dim=self.ts_dim,
                columns=columns,
                num_shards=self.num_shards,
                target_partition_size=self.target_partition_size,
                query_granularity=self.query_granularity,
                segment_granularity=self.segment_granularity,
                metric_spec=self.metric_spec,
                hadoop_dependency_coordinates=self.hadoop_dependency_coordinates,
            )
            logging.info("Load seems to have succeeded!")
        finally:
            logging.info("Cleaning up by dropping the temp " "Hive table {}".format(hive_table))
            hql = "DROP TABLE IF EXISTS {}".format(hive_table)
            hive.run_cli(hql)
開發者ID:asnir,項目名稱:airflow,代碼行數:55,代碼來源:hive_to_druid.py

示例2: execute

    def execute(self, context):
        hive = HiveCliHook(hive_cli_conn_id=self.hive_cli_conn_id)
        mssql = MsSqlHook(mssql_conn_id=self.mssql_conn_id)

        logging.info("Dumping Microsoft SQL Server query results to local file")
        conn = mssql.get_conn()
        cursor = conn.cursor()
        cursor.execute(self.sql)
        with NamedTemporaryFile("w") as f:
            csv_writer = csv.writer(f, delimiter=self.delimiter, encoding='utf-8')
            field_dict = OrderedDict()
            col_count = 0
            for field in cursor.description:
                col_count += 1
                col_position = "Column{position}".format(position=col_count)
                field_dict[col_position if field[0] == '' else field[0]] = self.type_map(field[1])
            csv_writer.writerows(cursor)
            f.flush()
            cursor.close()
            conn.close()
            logging.info("Loading file into Hive")
            hive.load_file(
                f.name,
                self.hive_table,
                field_dict=field_dict,
                create=self.create,
                partition=self.partition,
                delimiter=self.delimiter,
                recreate=self.recreate)
開發者ID:bioteam,項目名稱:incubator-airflow,代碼行數:29,代碼來源:mssql_to_hive.py

示例3: test_run_cli_with_hive_conf

    def test_run_cli_with_hive_conf(self):
        hql = "set key;\n" \
              "set airflow.ctx.dag_id;\nset airflow.ctx.dag_run_id;\n" \
              "set airflow.ctx.task_id;\nset airflow.ctx.execution_date;\n"

        dag_id_ctx_var_name = \
            AIRFLOW_VAR_NAME_FORMAT_MAPPING['AIRFLOW_CONTEXT_DAG_ID']['env_var_format']
        task_id_ctx_var_name = \
            AIRFLOW_VAR_NAME_FORMAT_MAPPING['AIRFLOW_CONTEXT_TASK_ID']['env_var_format']
        execution_date_ctx_var_name = \
            AIRFLOW_VAR_NAME_FORMAT_MAPPING['AIRFLOW_CONTEXT_EXECUTION_DATE'][
                'env_var_format']
        dag_run_id_ctx_var_name = \
            AIRFLOW_VAR_NAME_FORMAT_MAPPING['AIRFLOW_CONTEXT_DAG_RUN_ID'][
                'env_var_format']
        os.environ[dag_id_ctx_var_name] = 'test_dag_id'
        os.environ[task_id_ctx_var_name] = 'test_task_id'
        os.environ[execution_date_ctx_var_name] = 'test_execution_date'
        os.environ[dag_run_id_ctx_var_name] = 'test_dag_run_id'

        hook = HiveCliHook()
        output = hook.run_cli(hql=hql, hive_conf={'key': 'value'})
        self.assertIn('value', output)
        self.assertIn('test_dag_id', output)
        self.assertIn('test_task_id', output)
        self.assertIn('test_execution_date', output)
        self.assertIn('test_dag_run_id', output)

        del os.environ[dag_id_ctx_var_name]
        del os.environ[task_id_ctx_var_name]
        del os.environ[execution_date_ctx_var_name]
        del os.environ[dag_run_id_ctx_var_name]
開發者ID:AdamUnger,項目名稱:incubator-airflow,代碼行數:32,代碼來源:test_hive_hook.py

示例4: test_load_df_with_data_types

    def test_load_df_with_data_types(self, mock_run_cli):
        d = OrderedDict()
        d['b'] = [True]
        d['i'] = [-1]
        d['t'] = [1]
        d['f'] = [0.0]
        d['c'] = ['c']
        d['M'] = [datetime.datetime(2018, 1, 1)]
        d['O'] = [object()]
        d['S'] = ['STRING'.encode('utf-8')]
        d['U'] = ['STRING']
        d['V'] = [None]
        df = pd.DataFrame(d)

        hook = HiveCliHook()
        hook.load_df(df, 't')

        query = """
            CREATE TABLE IF NOT EXISTS t (
                b BOOLEAN,
                i BIGINT,
                t BIGINT,
                f DOUBLE,
                c STRING,
                M TIMESTAMP,
                O STRING,
                S STRING,
                U STRING,
                V STRING)
            ROW FORMAT DELIMITED
            FIELDS TERMINATED BY ','
            STORED AS textfile
            ;
        """
        assertEqualIgnoreMultipleSpaces(self, mock_run_cli.call_args_list[0][0][0], query)
開發者ID:AdamUnger,項目名稱:incubator-airflow,代碼行數:35,代碼來源:test_hive_hook.py

示例5: execute

    def execute(self, context):
        hive = HiveCliHook(hive_cli_conn_id=self.hive_cli_conn_id)
        mysql = MySqlHook(mysql_conn_id=self.mysql_conn_id)

        self.log.info("Dumping MySQL query results to local file")
        conn = mysql.get_conn()
        cursor = conn.cursor()
        cursor.execute(self.sql)
        with NamedTemporaryFile("wb") as f:
            csv_writer = csv.writer(f, delimiter=self.delimiter, encoding="utf-8")
            field_dict = OrderedDict()
            for field in cursor.description:
                field_dict[field[0]] = self.type_map(field[1])
            csv_writer.writerows(cursor)
            f.flush()
            cursor.close()
            conn.close()
            self.log.info("Loading file into Hive")
            hive.load_file(
                f.name,
                self.hive_table,
                field_dict=field_dict,
                create=self.create,
                partition=self.partition,
                delimiter=self.delimiter,
                recreate=self.recreate,
                tblproperties=self.tblproperties)
開發者ID:7digital,項目名稱:incubator-airflow,代碼行數:27,代碼來源:mysql_to_hive.py

示例6: execute

    def execute(self, context):
        hive = HiveCliHook(hive_cli_conn_id=self.hive_cli_conn_id)
        self.log.info("Extracting data from Hive")
        hive_table = 'druid.' + context['task_instance_key_str'].replace('.', '_')
        sql = self.sql.strip().strip(';')
        tblproperties = ''.join([", '{}' = '{}'"
                                .format(k, v)
                                 for k, v in self.hive_tblproperties.items()])
        hql = """\
        SET mapred.output.compress=false;
        SET hive.exec.compress.output=false;
        DROP TABLE IF EXISTS {hive_table};
        CREATE TABLE {hive_table}
        ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
        STORED AS TEXTFILE
        TBLPROPERTIES ('serialization.null.format' = ''{tblproperties})
        AS
        {sql}
        """.format(hive_table=hive_table, tblproperties=tblproperties, sql=sql)
        self.log.info("Running command:\n %s", hql)
        hive.run_cli(hql)

        m = HiveMetastoreHook(self.metastore_conn_id)

        # Get the Hive table and extract the columns
        t = m.get_table(hive_table)
        columns = [col.name for col in t.sd.cols]

        # Get the path on hdfs
        static_path = m.get_table(hive_table).sd.location

        schema, table = hive_table.split('.')

        druid = DruidHook(druid_ingest_conn_id=self.druid_ingest_conn_id)

        try:
            index_spec = self.construct_ingest_query(
                static_path=static_path,
                columns=columns,
            )

            self.log.info("Inserting rows into Druid, hdfs path: %s", static_path)

            druid.submit_indexing_job(index_spec)

            self.log.info("Load seems to have succeeded!")
        finally:
            self.log.info(
                "Cleaning up by dropping the temp Hive table %s",
                hive_table
            )
            hql = "DROP TABLE IF EXISTS {}".format(hive_table)
            hive.run_cli(hql)
開發者ID:Fokko,項目名稱:incubator-airflow,代碼行數:53,代碼來源:hive_to_druid.py

示例7: test_load_file

    def test_load_file(self, mock_run_cli):
        filepath = "/path/to/input/file"
        table = "output_table"

        hook = HiveCliHook()
        hook.load_file(filepath=filepath, table=table, create=False)

        query = (
            "LOAD DATA LOCAL INPATH '{filepath}' "
            "OVERWRITE INTO TABLE {table} \n"
            .format(filepath=filepath, table=table)
        )
        mock_run_cli.assert_called_with(query)
開發者ID:AdamUnger,項目名稱:incubator-airflow,代碼行數:13,代碼來源:test_hive_hook.py

示例8: test_load_df_with_optional_parameters

    def test_load_df_with_optional_parameters(self, mock_to_csv, mock_load_file):
        hook = HiveCliHook()
        b = (True, False)
        for create, recreate in itertools.product(b, b):
            mock_load_file.reset_mock()
            hook.load_df(df=pd.DataFrame({"c": range(0, 10)}),
                         table="t",
                         create=create,
                         recreate=recreate)

            mock_load_file.assert_called_once()
            kwargs = mock_load_file.call_args[1]
            self.assertEqual(kwargs["create"], create)
            self.assertEqual(kwargs["recreate"], recreate)
開發者ID:AdamUnger,項目名稱:incubator-airflow,代碼行數:14,代碼來源:test_hive_hook.py

示例9: execute

 def execute(self, context):
     self.hive = HiveCliHook(hive_cli_conn_id=self.hive_cli_conn_id)
     self.s3 = S3Hook(s3_conn_id=self.s3_conn_id)
     logging.info("Downloading S3 file")
     if self.wildcard_match:
         if not self.s3.check_for_wildcard_key(self.s3_key):
             raise AirflowException("No key matches {0}".format(self.s3_key))
         s3_key_object = self.s3.get_wildcard_key(self.s3_key)
     else:
         if not self.s3.check_for_key(self.s3_key):
             raise AirflowException(
                 "The key {0} does not exists".format(self.s3_key))
         s3_key_object = self.s3.get_key(self.s3_key)
     with NamedTemporaryFile("w") as f:
         logging.info("Dumping S3 key {0} contents to local"
                      " file {1}".format(s3_key_object.key, f.name))
         s3_key_object.get_contents_to_file(f)
         f.flush()
         self.s3.connection.close()
         if not self.headers:
             logging.info("Loading file into Hive")
             self.hive.load_file(
                 f.name,
                 self.hive_table,
                 field_dict=self.field_dict,
                 create=self.create,
                 partition=self.partition,
                 delimiter=self.delimiter,
                 recreate=self.recreate)
         else:
             with open(f.name, 'r') as tmpf:
                 if self.check_headers:
                     header_l = tmpf.readline()
                     header_line = header_l.rstrip()
                     header_list = header_line.split(self.delimiter)
                     field_names = list(self.field_dict.keys())
                     test_field_match = [h1.lower() == h2.lower() for h1, h2
                                         in zip(header_list, field_names)]
                     if not all(test_field_match):
                         logging.warning("Headers do not match field names"
                                         "File headers:\n {header_list}\n"
                                         "Field names: \n {field_names}\n"
                                         "".format(**locals()))
                         raise AirflowException("Headers do not match the "
                                         "field_dict keys")
                 with NamedTemporaryFile("w") as f_no_headers:
                     tmpf.seek(0)
                     next(tmpf)
                     for line in tmpf:
                         f_no_headers.write(line)
                     f_no_headers.flush()
                     logging.info("Loading file without headers into Hive")
                     self.hive.load_file(
                         f_no_headers.name,
                         self.hive_table,
                         field_dict=self.field_dict,
                         create=self.create,
                         partition=self.partition,
                         delimiter=self.delimiter,
                         recreate=self.recreate)
開發者ID:AndreiDev,項目名稱:incubator-airflow,代碼行數:60,代碼來源:s3_to_hive_operator.py

示例10: test_load_df

    def test_load_df(self, mock_to_csv, mock_load_file):
        df = pd.DataFrame({"c": ["foo", "bar", "baz"]})
        table = "t"
        delimiter = ","
        encoding = "utf-8"

        hook = HiveCliHook()
        hook.load_df(df=df,
                     table=table,
                     delimiter=delimiter,
                     encoding=encoding)

        mock_to_csv.assert_called_once()
        kwargs = mock_to_csv.call_args[1]
        self.assertEqual(kwargs["header"], False)
        self.assertEqual(kwargs["index"], False)
        self.assertEqual(kwargs["sep"], delimiter)

        mock_load_file.assert_called_once()
        kwargs = mock_load_file.call_args[1]
        self.assertEqual(kwargs["delimiter"], delimiter)
        self.assertEqual(kwargs["field_dict"], {"c": u"STRING"})
        self.assertTrue(isinstance(kwargs["field_dict"], OrderedDict))
        self.assertEqual(kwargs["table"], table)
開發者ID:AdamUnger,項目名稱:incubator-airflow,代碼行數:24,代碼來源:test_hive_hook.py

示例11: S3ToHiveTransfer

class S3ToHiveTransfer(BaseOperator):
    """
    Moves data from S3 to Hive. The operator downloads a file from S3,
    stores the file locally before loading it into a Hive table.
    If the ``create`` or ``recreate`` arguments are set to ``True``,
    a ``CREATE TABLE`` and ``DROP TABLE`` statements are generated.
    Hive data types are inferred from the cursor's metadata from.

    Note that the table generated in Hive uses ``STORED AS textfile``
    which isn't the most efficient serialization format. If a
    large amount of data is loaded and/or if the tables gets
    queried considerably, you may want to use this operator only to
    stage the data into a temporary table before loading it into its
    final destination using a ``HiveOperator``.

    :param s3_key: The key to be retrieved from S3
    :type s3_key: str
    :param field_dict: A dictionary of the fields name in the file
        as keys and their Hive types as values
    :type field_dict: dict
    :param hive_table: target Hive table, use dot notation to target a
        specific database
    :type hive_table: str
    :param create: whether to create the table if it doesn't exist
    :type create: bool
    :param recreate: whether to drop and recreate the table at every
        execution
    :type recreate: bool
    :param partition: target partition as a dict of partition columns
        and values
    :type partition: dict
    :param headers: whether the file contains column names on the first
        line
    :type headers: bool
    :param check_headers: whether the column names on the first line should be
        checked against the keys of field_dict
    :type check_headers: bool
    :param wildcard_match: whether the s3_key should be interpreted as a Unix
        wildcard pattern
    :type wildcard_match: bool
    :param delimiter: field delimiter in the file
    :type delimiter: str
    :param aws_conn_id: source s3 connection
    :type aws_conn_id: str
    :param hive_cli_conn_id: destination hive connection
    :type hive_cli_conn_id: str
    :param input_compressed: Boolean to determine if file decompression is
        required to process headers
    :type input_compressed: bool
    :param tblproperties: TBLPROPERTIES of the hive table being created
    :type tblproperties: dict
    """

    template_fields = ('s3_key', 'partition', 'hive_table')
    template_ext = ()
    ui_color = '#a0e08c'

    @apply_defaults
    def __init__(
            self,
            s3_key,
            field_dict,
            hive_table,
            delimiter=',',
            create=True,
            recreate=False,
            partition=None,
            headers=False,
            check_headers=False,
            wildcard_match=False,
            aws_conn_id='aws_default',
            hive_cli_conn_id='hive_cli_default',
            input_compressed=False,
            tblproperties=None,
            *args, **kwargs):
        super(S3ToHiveTransfer, self).__init__(*args, **kwargs)
        self.s3_key = s3_key
        self.field_dict = field_dict
        self.hive_table = hive_table
        self.delimiter = delimiter
        self.create = create
        self.recreate = recreate
        self.partition = partition
        self.headers = headers
        self.check_headers = check_headers
        self.wildcard_match = wildcard_match
        self.hive_cli_conn_id = hive_cli_conn_id
        self.aws_conn_id = aws_conn_id
        self.input_compressed = input_compressed
        self.tblproperties = tblproperties

        if (self.check_headers and
                not (self.field_dict is not None and self.headers)):
            raise AirflowException("To check_headers provide " +
                                   "field_dict and headers")

    def execute(self, context):
        # Downloading file from S3
        self.s3 = S3Hook(aws_conn_id=self.aws_conn_id)
        self.hive = HiveCliHook(hive_cli_conn_id=self.hive_cli_conn_id)
#.........這裏部分代碼省略.........
開發者ID:7digital,項目名稱:incubator-airflow,代碼行數:101,代碼來源:s3_to_hive_operator.py

示例12: execute

    def execute(self, context):
        # Downloading file from S3
        self.s3 = S3Hook(aws_conn_id=self.aws_conn_id)
        self.hive = HiveCliHook(hive_cli_conn_id=self.hive_cli_conn_id)
        self.log.info("Downloading S3 file")

        if self.wildcard_match:
            if not self.s3.check_for_wildcard_key(self.s3_key):
                raise AirflowException("No key matches {0}"
                                       .format(self.s3_key))
            s3_key_object = self.s3.get_wildcard_key(self.s3_key)
        else:
            if not self.s3.check_for_key(self.s3_key):
                raise AirflowException(
                    "The key {0} does not exists".format(self.s3_key))
            s3_key_object = self.s3.get_key(self.s3_key)
        root, file_ext = os.path.splitext(s3_key_object.key)
        with TemporaryDirectory(prefix='tmps32hive_') as tmp_dir,\
                NamedTemporaryFile(mode="wb",
                                   dir=tmp_dir,
                                   suffix=file_ext) as f:
            self.log.info("Dumping S3 key {0} contents to local file {1}"
                          .format(s3_key_object.key, f.name))
            s3_key_object.download_fileobj(f)
            f.flush()
            if not self.headers:
                self.log.info("Loading file %s into Hive", f.name)
                self.hive.load_file(
                    f.name,
                    self.hive_table,
                    field_dict=self.field_dict,
                    create=self.create,
                    partition=self.partition,
                    delimiter=self.delimiter,
                    recreate=self.recreate,
                    tblproperties=self.tblproperties)
            else:
                # Decompressing file
                if self.input_compressed:
                    self.log.info("Uncompressing file %s", f.name)
                    fn_uncompressed = uncompress_file(f.name,
                                                      file_ext,
                                                      tmp_dir)
                    self.log.info("Uncompressed to %s", fn_uncompressed)
                    # uncompressed file available now so deleting
                    # compressed file to save disk space
                    f.close()
                else:
                    fn_uncompressed = f.name

                # Testing if header matches field_dict
                if self.check_headers:
                    self.log.info("Matching file header against field_dict")
                    header_list = self._get_top_row_as_list(fn_uncompressed)
                    if not self._match_headers(header_list):
                        raise AirflowException("Header check failed")

                # Deleting top header row
                self.log.info("Removing header from file %s", fn_uncompressed)
                headless_file = (
                    self._delete_top_row_and_compress(fn_uncompressed,
                                                      file_ext,
                                                      tmp_dir))
                self.log.info("Headless file %s", headless_file)
                self.log.info("Loading file %s into Hive", headless_file)
                self.hive.load_file(headless_file,
                                    self.hive_table,
                                    field_dict=self.field_dict,
                                    create=self.create,
                                    partition=self.partition,
                                    delimiter=self.delimiter,
                                    recreate=self.recreate,
                                    tblproperties=self.tblproperties)
開發者ID:7digital,項目名稱:incubator-airflow,代碼行數:73,代碼來源:s3_to_hive_operator.py

示例13: ddl

 def ddl(self):
     table = request.args.get("table")
     sql = "SHOW CREATE TABLE {table};".format(table=table)
     h = HiveCliHook(HIVE_CLI_CONN_ID)
     return h.run_cli(sql)
開發者ID:AdamUnger,項目名稱:incubator-airflow,代碼行數:5,代碼來源:main.py

示例14: execute

    def execute(self, context):
        # Downloading file from S3
        self.s3 = S3Hook(aws_conn_id=self.aws_conn_id, verify=self.verify)
        self.hive = HiveCliHook(hive_cli_conn_id=self.hive_cli_conn_id)
        self.log.info("Downloading S3 file")

        if self.wildcard_match:
            if not self.s3.check_for_wildcard_key(self.s3_key):
                raise AirflowException("No key matches {0}"
                                       .format(self.s3_key))
            s3_key_object = self.s3.get_wildcard_key(self.s3_key)
        else:
            if not self.s3.check_for_key(self.s3_key):
                raise AirflowException(
                    "The key {0} does not exists".format(self.s3_key))
            s3_key_object = self.s3.get_key(self.s3_key)

        root, file_ext = os.path.splitext(s3_key_object.key)
        if (self.select_expression and self.input_compressed and
                file_ext.lower() != '.gz'):
            raise AirflowException("GZIP is the only compression " +
                                   "format Amazon S3 Select supports")

        with TemporaryDirectory(prefix='tmps32hive_') as tmp_dir,\
                NamedTemporaryFile(mode="wb",
                                   dir=tmp_dir,
                                   suffix=file_ext) as f:
            self.log.info(
                "Dumping S3 key %s contents to local file %s", s3_key_object.key, f.name
            )
            if self.select_expression:
                option = {}
                if self.headers:
                    option['FileHeaderInfo'] = 'USE'
                if self.delimiter:
                    option['FieldDelimiter'] = self.delimiter

                input_serialization = {'CSV': option}
                if self.input_compressed:
                    input_serialization['CompressionType'] = 'GZIP'

                content = self.s3.select_key(
                    bucket_name=s3_key_object.bucket_name,
                    key=s3_key_object.key,
                    expression=self.select_expression,
                    input_serialization=input_serialization
                )
                f.write(content.encode("utf-8"))
            else:
                s3_key_object.download_fileobj(f)
            f.flush()

            if self.select_expression or not self.headers:
                self.log.info("Loading file %s into Hive", f.name)
                self.hive.load_file(
                    f.name,
                    self.hive_table,
                    field_dict=self.field_dict,
                    create=self.create,
                    partition=self.partition,
                    delimiter=self.delimiter,
                    recreate=self.recreate,
                    tblproperties=self.tblproperties)
            else:
                # Decompressing file
                if self.input_compressed:
                    self.log.info("Uncompressing file %s", f.name)
                    fn_uncompressed = uncompress_file(f.name,
                                                      file_ext,
                                                      tmp_dir)
                    self.log.info("Uncompressed to %s", fn_uncompressed)
                    # uncompressed file available now so deleting
                    # compressed file to save disk space
                    f.close()
                else:
                    fn_uncompressed = f.name

                # Testing if header matches field_dict
                if self.check_headers:
                    self.log.info("Matching file header against field_dict")
                    header_list = self._get_top_row_as_list(fn_uncompressed)
                    if not self._match_headers(header_list):
                        raise AirflowException("Header check failed")

                # Deleting top header row
                self.log.info("Removing header from file %s", fn_uncompressed)
                headless_file = (
                    self._delete_top_row_and_compress(fn_uncompressed,
                                                      file_ext,
                                                      tmp_dir))
                self.log.info("Headless file %s", headless_file)
                self.log.info("Loading file %s into Hive", headless_file)
                self.hive.load_file(headless_file,
                                    self.hive_table,
                                    field_dict=self.field_dict,
                                    create=self.create,
                                    partition=self.partition,
                                    delimiter=self.delimiter,
                                    recreate=self.recreate,
                                    tblproperties=self.tblproperties)
開發者ID:apache,項目名稱:incubator-airflow,代碼行數:100,代碼來源:s3_to_hive_operator.py

示例15: test_run_cli

 def test_run_cli(self):
     hook = HiveCliHook()
     hook.run_cli("SHOW DATABASES")
開發者ID:AdamUnger,項目名稱:incubator-airflow,代碼行數:3,代碼來源:test_hive_hook.py


注:本文中的airflow.hooks.hive_hooks.HiveCliHook類示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。