當前位置: 首頁>>代碼示例>>Python>>正文


Python Pool.mdp_fn方法代碼示例

本文整理匯總了Python中ZIBMolPy.pool.Pool.mdp_fn方法的典型用法代碼示例。如果您正苦於以下問題:Python Pool.mdp_fn方法的具體用法?Python Pool.mdp_fn怎麽用?Python Pool.mdp_fn使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在ZIBMolPy.pool.Pool的用法示例。


在下文中一共展示了Pool.mdp_fn方法的2個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: main

# 需要導入模塊: from ZIBMolPy.pool import Pool [as 別名]
# 或者: from ZIBMolPy.pool.Pool import mdp_fn [as 別名]

#.........這裏部分代碼省略.........
    else:
        mdp_options["energygrps"] = "MOI"
        mdp_options_dirty = True

    a, b = mdp_options.has_key("nstxout"), mdp_options.has_key("nstenergy")
    if a and not b:
        mdp_options["nstenergy"] = mdp_options["nstxout"]
        mdp_options_dirty = True
    elif b and not a:
        mdp_options["nstxout"] = mdp_options["nstenergy"]
        mdp_options_dirty = True
    elif b and a:
        assert mdp_options["nstxout"] == mdp_options["nstenergy"], "nstxout should equal nstenergy"

    if int(mdp_options["nsteps"]) > 1e6:
        msg = "Number of MD-steps?"
        mdp_options["nsteps"] = str(userinput(msg, "int", default=int(mdp_options["nsteps"])))

        # create a fixed mdp-file
    if mdp_options_dirty:
        print("Creating copy of mdp-file and adding missing options.")
        out_fn = options.grompp.rsplit(".", 1)[0] + "_fixed.mdp"
        f = open(out_fn, "w")  # append
        f.write("; Generated by zgf_create_pool\n")
        for i in mdp_options.items():
            f.write("%s = %s\n" % i)
        f.write("; EOF\n")
        f.close()
        options.grompp = out_fn

        # check if subsampling is reasonable
    if os.path.getsize(options.presampling) > 100e6:  # 100MB
        print("Presampling trajectory is large")
        trr = TrrFile(options.presampling)
        dt = trr.first_frame.next().t - trr.first_frame.t
        trr.close()
        print("Presampling timestep is %.2f ps" % dt)
        if dt < 10:  # picoseconds
            # TODO: maybe calculate subsampling factor individually, or ask?
            msg = "Subsample presampling trajectory by a tenth?"
            if userinput(msg, "bool"):
                out_fn = options.presampling.rsplit(".", 1)[0] + "_tenth.trr"
                cmd = ["trjconv", "-f", options.presampling, "-o", out_fn, "-skip", "10"]
                check_call(cmd)
                options.presampling = out_fn

                # balance linears
    if options.balance_linears:
        print("Balance Linears")
        old_converter = Converter(options.internals)
        print("Loading presampling....")
        frames = old_converter.read_trajectory(options.presampling)
        new_coord_list = []
        for c in old_converter:
            if not isinstance(c, LinearCoordinate):
                new_coord_list.append(c)
                continue  # we do not work on other Coordinate-Types
                # TODO: is this a good way to determine new_weight and new_offset???
            new_weight = c.weight / sqrt(2 * frames.var().getcoord(c))
            new_offset = c.offset + frames.mean().getcoord(c)
            new_coord = LinearCoordinate(*c.atoms, label=c.label, weight=new_weight, offset=new_offset)
            new_coord_list.append(new_coord)
        new_converter = Converter(coord_list=new_coord_list)

        assert old_converter.filename.endswith(".int")
        options.internals = old_converter.filename[:-4] + "_balanced.int"
        print("Writing balanced Converter to: " + options.internals)
        f = open(options.internals, "w")
        f.write(new_converter.serialize())
        f.close()
        assert len(Converter(options.internals)) == len(new_coord_list)  # try parsing

        # Finally: Create root-node and pool
    pool = Pool()
    if len(pool) != 0:
        print("ERROR: A pool already exists here.")
        sys.exit(1)

    pool.int_fn = options.internals
    pool.mdp_fn = options.grompp
    pool.top_fn = options.topology
    pool.ndx_fn = options.index
    pool.temperature = options.temperature
    pool.gr_threshold = options.gr_threshold
    pool.gr_chains = options.gr_chains
    pool.alpha = None
    pool.save()  # save pool for the first time...

    # ... then we can save the first node...
    node0 = Node()
    node0.state = "refined"
    node0.save()  # also creates the node directory ... needed for symlink
    os.symlink(os.path.relpath(options.presampling, node0.dir), node0.trr_fn)
    os.symlink(os.path.relpath(options.molecule, node0.dir), node0.pdb_fn)

    pool.root_name = node0.name
    pool.save()  # ... now we have to save the pool again.

    if not path.exists("analysis"):
        os.mkdir("analysis")
開發者ID:iwasherefirst2,項目名稱:ZIBMolPy,代碼行數:104,代碼來源:zgf_create_pool.py

示例2: main

# 需要導入模塊: from ZIBMolPy.pool import Pool [as 別名]
# 或者: from ZIBMolPy.pool.Pool import mdp_fn [as 別名]

#.........這裏部分代碼省略.........
			sys.exit("Quit by user.")

	a, b = mdp_options.has_key("nstxout"), mdp_options.has_key("nstenergy")
	if(a and not b):
		mdp_options["nstenergy"] = mdp_options["nstxout"]
		mdp_options_dirty = True
	elif(b and not a):
		mdp_options["nstxout"] = mdp_options["nstenergy"]
		mdp_options_dirty = True
	elif(b and a):
		assert(mdp_options["nstxout"] == mdp_options["nstenergy"]), "nstxout should equal nstenergy"
		
	if(int(mdp_options["nsteps"]) > 1e6):
		msg = "Number of MD-steps?"
		mdp_options["nsteps"] = str( userinput(msg, "int", default=int(mdp_options["nsteps"])) )
	
	# create a fixed mdp-file
	if(mdp_options_dirty):
		print("Creating copy of mdp-file and adding missing options.")
		out_fn = options.grompp.rsplit(".", 1)[0] + "_fixed.mdp"
		f = open(out_fn, "w") # append
		f.write("; Generated by zgf_create_pool\n")
		for i in sorted(mdp_options.items()):
			f.write("%s = %s\n"%i)
		f.write("; EOF\n")
		f.close()
		options.grompp = out_fn
		
	
	# check if subsampling is reasonable
	if(os.path.getsize(options.presampling) > 100e6): # 100MB
		print("Presampling trajectory is large")
		trr = TrrFile(options.presampling)
		dt = trr.first_frame.next().t - trr.first_frame.t
		trr.close()
		print("Presampling timestep is %.2f ps"%dt)
		if(dt < 10): # picoseconds
			#TODO: maybe calculate subsampling factor individually, or ask? 
			msg = "Subsample presampling trajectory by a tenth?"
			if(userinput(msg, "bool")):
				out_fn = options.presampling.rsplit(".", 1)[0] + "_tenth.trr"
				cmd = ["trjconv", "-f", options.presampling, "-o", out_fn, "-skip", "10"]
				check_call(cmd)
				options.presampling = out_fn
	
			
	# balance linears
	if(options.balance_linears):
		print("Balance Linears")
		old_converter = Converter(options.internals)
		print("Loading presampling....")
		frames = old_converter.read_trajectory(options.presampling)
		new_coord_list = []
		for c in old_converter:
			if(not isinstance(c, LinearCoordinate)):
				new_coord_list.append(c)
				continue # we do not work on other Coordinate-Types
			#TODO: is this a good way to determine new_weight and new_offset??? 
			new_weight = c.weight / sqrt(2*frames.var().getcoord(c))
			new_offset = c.offset + frames.mean().getcoord(c)
			new_coord = LinearCoordinate(*c.atoms, label=c.label, weight=new_weight, offset=new_offset)
			new_coord_list.append(new_coord)
		new_converter = Converter(coord_list=new_coord_list)
	
		assert(old_converter.filename.endswith(".int"))
		options.internals = old_converter.filename[:-4] + "_balanced.int"
		print("Writing balanced Converter to: "+options.internals)
		f = open(options.internals, "w")
		f.write(new_converter.serialize())
		f.close()
		assert(len(Converter(options.internals)) == len(new_coord_list)) #try parsing
	
	# Finally: Create root-node and pool
	pool = Pool()
	if(len(pool) != 0):
		print("ERROR: A pool already exists here.")
		sys.exit(1)
	
	pool.int_fn = options.internals
	pool.mdp_fn = options.grompp
	pool.top_fn = options.topology
	pool.ndx_fn = options.index
	pool.temperature = int(temperature)
	pool.gr_threshold = options.gr_threshold
	pool.gr_chains = options.gr_chains
	pool.alpha = None
	pool.save() # save pool for the first time...

	# ... then we can save the first node...
	node0 = Node()
	node0.state = "refined"	
	node0.save() # also creates the node directory ... needed for symlink
	os.symlink(os.path.relpath(options.presampling, node0.dir), node0.trr_fn)
	os.symlink(os.path.relpath(options.molecule, node0.dir), node0.pdb_fn)
	
	pool.root_name = node0.name
	pool.save() #... now we have to save the pool again.
	
	if(not path.exists("analysis")):
		os.mkdir("analysis")
開發者ID:CMD-at-ZIB,項目名稱:ZIBMolPy,代碼行數:104,代碼來源:zgf_create_pool.py


注:本文中的ZIBMolPy.pool.Pool.mdp_fn方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。