當前位置: 首頁>>代碼示例>>Python>>正文


Python BlockFactory.evaluate_at方法代碼示例

本文整理匯總了Python中WaveBlocksND.BlockFactory.evaluate_at方法的典型用法代碼示例。如果您正苦於以下問題:Python BlockFactory.evaluate_at方法的具體用法?Python BlockFactory.evaluate_at怎麽用?Python BlockFactory.evaluate_at使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在WaveBlocksND.BlockFactory的用法示例。


在下文中一共展示了BlockFactory.evaluate_at方法的2個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: compute_energy

# 需要導入模塊: from WaveBlocksND import BlockFactory [as 別名]
# 或者: from WaveBlocksND.BlockFactory import evaluate_at [as 別名]
def compute_energy(iom, blockid=0, eigentrafo=True, iseigen=True):
    """
    :param iom: An :py:class:`IOManager: instance providing the simulation data.
    :param blockid: The data block from which the values are read. Default is `0`.
    :param eigentrafo: Whether to make a transformation into the eigenbasis.
    :type eigentrafo: Boolean, default is ``True``.
    :param iseigen: Whether the data is assumed to be in the eigenbasis.
    :type iseigen: Boolean, default is ``True``

    """
    parameters = iom.load_parameters()

    # Number of time steps we saved
    timesteps = iom.load_wavefunction_timegrid(blockid=blockid)
    nrtimesteps = timesteps.shape[0]

    # Construct grid from the parameters
    grid = BlockFactory().create_grid(parameters)

    # The potential used
    Potential = BlockFactory().create_potential(parameters)

    # The operators
    KO = KineticOperator(grid)
    KO.calculate_operator(parameters["eps"])
    opT = KO
    if eigentrafo is True:
        opV = Potential.evaluate_at(grid)
    else:
        if iseigen is True:
            opV = Potential.evaluate_eigenvalues_at(grid, as_matrix=True)
        else:
            opV = Potential.evaluate_at(grid, as_matrix=True)

    # Basis transformator
    if eigentrafo is True:
        BT = BasisTransformationWF(Potential)
        BT.set_grid(grid)

    # And two empty wavefunctions
    WF = WaveFunction(parameters)
    WF.set_grid(grid)
    WF2 = WaveFunction(parameters)
    WF2.set_grid(grid)

    # We want to save norms, thus add a data slot to the data file
    iom.add_energy(parameters, timeslots=nrtimesteps, blockid=blockid)

    nst = Potential.get_number_components()

    if eigentrafo is True:

        # Iterate over all timesteps
        for i, step in enumerate(timesteps):
            print(" Computing energies of timestep # " + str(step))

            # Retrieve simulation data
            values = iom.load_wavefunction(timestep=step, blockid=blockid)
            values = [ values[j,...] for j in xrange(parameters["ncomponents"]) ]
            WF.set_values(values)

            # Project wavefunction values to eigenbasis
            BT.transform_to_eigen(WF)

            ekinlist = []
            epotlist = []

            # For each component of |Psi>
            values = WF.get_values()

            for index, item in enumerate(values):
                # tmp is the Vector (0, 0, 0, \psi_i, 0, 0, ...)
                tmp = [ zeros(item.shape) for z in xrange(nst) ]
                tmp[index] = item
                WF2.set_values(tmp)

                # Project this vector to the canonical basis
                BT.transform_to_canonical(WF2)

                # And calculate the energies of these components
                ekinlist.append(WF2.kinetic_energy(opT, summed=True))
                epotlist.append(WF2.potential_energy(opV, summed=True))

            iom.save_energy((ekinlist, epotlist), timestep=step, blockid=blockid)

    else:

        # Iterate over all timesteps
        for i, step in enumerate(timesteps):
            print(" Computing energies of timestep # " + str(step))

            # Retrieve simulation data
            values = iom.load_wavefunction(timestep=step, blockid=blockid)
            values = [ values[j,...] for j in xrange(parameters["ncomponents"]) ]
            WF.set_values(values)

            # And calculate the energies of these components
            ekinlist = WF.kinetic_energy(opT, summed=False)
            epotlist = WF.potential_energy(opV, summed=False)

#.........這裏部分代碼省略.........
開發者ID:GaZ3ll3,項目名稱:WaveBlocksND,代碼行數:103,代碼來源:EnergiesWavefunction.py

示例2: compute_evaluate_wavepackets

# 需要導入模塊: from WaveBlocksND import BlockFactory [as 別名]
# 或者: from WaveBlocksND.BlockFactory import evaluate_at [as 別名]
def compute_evaluate_wavepackets(pp, iom, blockid=0, eigentrafo=True):
    """Evaluate a homogeneous Hagedorn wavepacket on a given grid for each timestep.

    :param pp: An :py:class:`ParameterProvider` instance providing the grid data.
    :param iom: An :py:class:`IOManager` instance providing the simulation data.
    :param blockid: The data block from which the values are read.
    :param eigentrafo: Whether or not do an eigentransformation before evaluation is done.
    """
    parameters = iom.load_parameters()
    if pp is None:
        pp = parameters

    # Number of time steps we saved
    timesteps = iom.load_wavepacket_timegrid(blockid=blockid)
    nrtimesteps = timesteps.shape[0]

    # Prepare the potential for basis transformations
    Potential = BlockFactory().create_potential(parameters)
    grid = BlockFactory().create_grid(pp)

    # We want to save wavefunctions, thus add a data slot to the data file
    d = {"ncomponents": parameters["ncomponents"],
         "number_nodes": pp["number_nodes"],
         "dimension": parameters["dimension"]}
    iom.add_grid(d, blockid=blockid)
    iom.add_wavefunction(d, timeslots=nrtimesteps, flat=True, blockid=blockid)

    iom.save_grid(grid.get_nodes(), blockid=blockid)

    # Initialize a Hagedorn wavepacket with the data
    descr = iom.load_wavepacket_description(blockid=blockid)
    HAWP = BlockFactory().create_wavepacket(descr)

    # Basis transformator
    if eigentrafo is True:
        BT = BasisTransformationHAWP(Potential)
        BT.set_matrix_builder(HAWP.get_innerproduct())

    # Basis shapes
    BS_descr = iom.load_wavepacket_basisshapes(blockid=blockid)
    BS = {}
    for ahash, descr in BS_descr.items():
        BS[ahash] = BlockFactory().create_basis_shape(descr)

    WF = WaveFunction(parameters)
    WF.set_grid(grid)

    # Iterate over all timesteps
    for i, step in enumerate(timesteps):
        print(" Evaluating homogeneous wavepacket at timestep %d" % step)

        # Retrieve simulation data
        params = iom.load_wavepacket_parameters(timestep=step, blockid=blockid, key=("q", "p", "Q", "P", "S", "adQ"))
        hashes, coeffs = iom.load_wavepacket_coefficients(timestep=step, get_hashes=True, blockid=blockid)

        # Configure the wavepacket
        HAWP.set_parameters(params, key=("q", "p", "Q", "P", "S", "adQ"))
        HAWP.set_basis_shapes([BS[int(ha)] for ha in hashes])
        HAWP.set_coefficients(coeffs)

        # Transform to the eigenbasis.
        if eigentrafo is True:
            BT.transform_to_eigen(HAWP)

        # Evaluate the wavepacket
        values = HAWP.evaluate_at(grid, prefactor=True)
        WF.set_values(values)

        # Save the wave function
        iom.save_wavefunction(WF.get_values(), timestep=step, blockid=blockid)
開發者ID:Bredoto,項目名稱:WaveBlocksND,代碼行數:72,代碼來源:EvaluateWavepackets.py


注:本文中的WaveBlocksND.BlockFactory.evaluate_at方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。