當前位置: 首頁>>代碼示例>>Python>>正文


Python Tools.tanhDerivative方法代碼示例

本文整理匯總了Python中Tools.Tools.tanhDerivative方法的典型用法代碼示例。如果您正苦於以下問題:Python Tools.tanhDerivative方法的具體用法?Python Tools.tanhDerivative怎麽用?Python Tools.tanhDerivative使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在Tools.Tools的用法示例。


在下文中一共展示了Tools.tanhDerivative方法的1個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: from Tools import Tools [as 別名]
# 或者: from Tools.Tools import tanhDerivative [as 別名]
class Neuron:
    def __init__(self, numberOutputs, index):
        self.outputVal = 0.0
        self.index = index
        self.gradient = 0.0
        self.learningRate = 0.15
        self.alpha = 0.1
        self.tools = Tools()

        # for the neuron thas this neuron will feeds
        # Array of Connections
        self.outputWeights = []

        for i in range(0, numberOutputs):
            self.outputWeights.append(Connection())
            self.outputWeights[i].weight = self.randomWeight()
            #print self.outputWeights[i].weight

    def __repr__(self):
        return "Neuron : index = " + str(self.index) + ", outputVal = " + str(self.outputVal) + "\n" # + ", Connections : " + str(self.outputWeights) 
    def __str__(self):
        return self.__repr__()
    
    def feedForward(self, prevLayer):
        # Sum the previous layer's ouputs (which are our inputs)
        # Include the bias node from the previous layer

        sum = 0.0
    
        for i in range(0, len(prevLayer)):
            sum += prevLayer[i].outputVal * prevLayer[i].outputWeights[self.index].weight

        # update the outputVal
        self.outputVal = self.activationFunction(sum)
    
    def activationFunction(self, x):
        #return self.tools.sigmoid(x)
        return self.tools.tanh(x)

    def activationFunctionDerivative(self, x):
        #return self.tools.sigmoidDerivative(x)
        return self.tools.tanhDerivative(x)

    def randomWeight(self):
        return random.uniform(0.0, 1.0)

    def calcOutputGradients(self, targetVal):
        delta = targetVal - self.outputVal
        self.gradient = delta * self.activationFunctionDerivative(self.outputVal) 
    def calcHiddenGradients(self, nextLayer):
        dow = self.sumDow(nextLayer)
        self.gradient = dow * self.activationFunctionDerivative(self.outputVal)
    def sumDow(self, nextLayer):
        sum = 0.0

        for i in range(0, len(nextLayer) - 1):
            sum += (self.outputWeights[i].weight * nextLayer[i].gradient)
        return sum

    def updateInputWeights(self, prevLayer):
        for i in range(0, len(prevLayer)):
            neuron = prevLayer[i]
            oldDeltaWeight = neuron.outputWeights[self.index].deltaWeight
            newDeltaWeight = self.learningRate * neuron.outputVal * self.gradient + self.alpha * oldDeltaWeight
            neuron.outputWeights[self.index].deltaWeight = newDeltaWeight
            neuron.outputWeights[self.index].weight += newDeltaWeight
開發者ID:gmpetrov,項目名稱:nn-py,代碼行數:68,代碼來源:Neuron.py


注:本文中的Tools.Tools.tanhDerivative方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。