本文整理匯總了Python中ROOT.RooMsgService類的典型用法代碼示例。如果您正苦於以下問題:Python RooMsgService類的具體用法?Python RooMsgService怎麽用?Python RooMsgService使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
在下文中一共展示了RooMsgService類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: model
def model(self, ws, debug = 0):
if self.sModel not in self.items:
if debug>0:
print self.legend, 'no Model section defined in the config file'
print self.legend, 'no model will be created'
return
legend = '['+self.sModel+']:'
# FIXME: find a better way to load custom PDFs
#gROOT.ProcessLine(".L dijetQstarPdf.cxx+");
#gROOT.ProcessLine(".L Qstar_qg.cxx+");
#gROOT.ProcessLine(".L Qstar_qg_2.cxx+");
#gROOT.ProcessLine(".L Jacobian_mt.cxx+");
model_items = self.items[self.sModel]
if (debug>0):
print 'Loading model to the workspace', ws.GetName()
# using RooStats::HLFactory to parse the model
# make a temp file with a card file
card_file_name = 'hlfCardFile.rs'
with open(card_file_name, 'w') as cardfile:
for item in model_items:
print >> cardfile, item[0], '=', item[1]
hlfVerbosity = debug > 0
#hlf = ROOT.RooStats.HLFactory('HLFactoryExost', card_file_name, True)
hlf = RooStats.HLFactory('HLFactoryExost',
ws,
hlfVerbosity)
self.modelAutoImportWarningExplanation(legend, debug)
current_messaging_level = RooMsgService.instance().globalKillBelow() ;
if debug <= 0:
RooMsgService.instance().setGlobalKillBelow(RooFit.ERROR) ;
hlf.ProcessCard(card_file_name)
print legend, 'importing nonstandard class code into the workspace...'
ws.importClassCode();
#ws.importClassCode('Qstar_qg', true);
print legend, '...code import done'
# return messaging to the original level
RooMsgService.instance().setGlobalKillBelow(current_messaging_level) ;
示例2: __init__
def __init__(self, fit_data_collection, method="TMinuit"):
RooMsgService.instance().setGlobalKillBelow(RooFit.FATAL)
self.method = method
self.logger = logging.getLogger("RooFit")
self.constraints = fit_data_collection.constraints()
self.constraint_type = ""
self.saved_result = None
self.fit_data_collection = fit_data_collection
self.samples = fit_data_collection.mc_samples()
self.normalisation = fit_data_collection.mc_normalisation()
self.fit_data_1 = self.fit_data_collection.fit_data.items()[0][1]
self.fit_boundaries = self.fit_data_1.fit_boundaries
self.data_label = FitData.data_label
self.histograms = self.fit_data_1.histograms_
示例3: action
def action(ws, action_name, settings = None):
legend = '[Action]:'
print legend, 'beginning the ', action_name, 'action'
if action_name == 'bayes':
if settings['status'] == 'fail':
print legend, 'Bayesian calculator failed to configure'
print legend, 'action stopped.'
return
legend = '[Bayesian calculator]:'
#mconf = ws.obj('exostModelConfig')
mconf = ws.obj(settings['model_config_name'])
bCalc = ws.obj('exostBayes')
# to suppress messages when pdf goes to zero
RooMsgService.instance().setGlobalKillBelow(RooFit.FATAL)
if mconf.GetParametersOfInterest().getSize() == 1:
bInt = bCalc.GetInterval()
cl = bCalc.ConfidenceLevel()
print legend, str(cl)+'% CL central interval: [', bInt.LowerLimit(), ' - ', bInt.UpperLimit(), ']'
print legend, 'or', str(cl+(1.0-cl)/2), '% CL limits'
# make a posterior plot
if settings['do_posterior_plot']:
plot = bCalc.GetPosteriorPlot()
c1 = TCanvas('c1','Bayesian Calculator Result');
c1.cd(1)
plot.Draw()
c1.SaveAs('bayesian_example_plot.'+settings['plot_format'])
else:
print legend, 'Error: Bayesian Calc. only supports one parameter of interest'
print legend, 'the', action_name, 'action is done'
示例4:
help='use keys pdf for background')
parser.add_option('-b', action='store_true', default=False, dest='b',
help='no x windows')
(opts, args) = parser.parse_args()
import pyroot_logon
from ROOT import gROOT
gROOT.ProcessLine('.L buildSimPdf.cc+')
from ROOT import readData,computeRatio,computeRatioError,buildPdf,\
computeSumError,\
RooWorkspace,RooFit,TCanvas,kRed,kGreen,kDashed,buildSimPdf,RooArgSet,\
RooRealVar,RooMsgService, TMath, TFile, RooAbsReal
from math import sqrt
RooMsgService.instance().setGlobalKillBelow(RooFit.ERROR)
hidatafile = 'data/dimuonTree_150mub.root'
ppdatafile = 'data/dimuonTree_2011_pp.root'
mmin = 7.
mmax = 14.
cuts = '(muPlusPt > %0.1f) && (muMinusPt > %0.1f) && (abs(upsRapidity)<2.4) && (vProb > 0.05)' \
% (opts.pt, opts.pt)
simparamfile = opts.paramfile
useKeys = opts.keys
## cuts = '(muPlusPt > 3.5) && (muMinusPt > 3.5) && (abs(upsRapidity)<2.4)'
## simparamfile = 'nom3.5SimFit.txt'
示例5: RooWorkspace
parser.add_option('-b', action='store_true', default=False, dest='b',
help='no x windows')
(opts, args) = parser.parse_args()
import pyroot_logon
from ROOT import gROOT
gROOT.ProcessLine('.L buildSimPdf.cc+')
from ROOT import readData,computeRatio,computeRatioError,buildPdf,\
computeSumError,\
RooWorkspace,RooFit,TCanvas,kRed,kGreen,kDashed,buildSimPdf,RooArgSet,\
RooRealVar,RooMsgService, TMath, TFile, RooAbsReal, TGraph, \
RooStats
from math import sqrt
RooMsgService.instance().setGlobalKillBelow(RooFit.FATAL)
hidatafile = 'data/dimuonTree_150mub.root'
ppdatafile = 'data/dimuonTree_2011_pp.root'
mmin = 7.
mmax = 14.
cuts = '(muPlusPt > %0.1f) && (muMinusPt > %0.1f) && (abs(upsRapidity)<2.4) && (vProb > 0.05)' \
% (opts.pt, opts.pt)
simparamfile = opts.paramfile
useKeys = opts.keys
## cuts = '(muPlusPt > 3.5) && (muMinusPt > 3.5) && (abs(upsRapidity)<2.4)'
## simparamfile = 'nom3.5SimFit.txt'
ws = RooWorkspace("ws","ws")
示例6: main
#.........這裏部分代碼省略.........
nargs = 3,
help="Define a range of masses to be produced. Format: min max step",
metavar = ('MIN', 'MAX', 'STEP')
)
mass_group.add_argument("--masslist",
help = "List containing mass information"
)
args = parser.parse_args()
# check if the output directory exists
if not os.path.isdir( os.path.join(os.getcwd(),args.output_path) ):
os.mkdir( os.path.join(os.getcwd(),args.output_path) )
# mass points for which resonance shapes will be produced
masses = []
if args.massrange != None:
MIN, MAX, STEP = args.massrange
masses = range(MIN, MAX+STEP, STEP)
elif args.masslist != None:
# A mass list was provided
print "Will create mass list according to", args.masslist
masslist = __import__(args.masslist.replace(".py",""))
masses = masslist.masses
else:
masses = args.mass
# sort masses
masses.sort()
# import ROOT stuff
from ROOT import TFile, TH1F, TH1D, kTRUE, kFALSE
from ROOT import RooRealVar, RooDataHist, RooArgList, RooArgSet, RooAddPdf, RooFit, RooGenericPdf, RooWorkspace, RooMsgService, RooHistPdf
if not args.debug:
RooMsgService.instance().setSilentMode(kTRUE)
RooMsgService.instance().setStreamStatus(0,kFALSE)
RooMsgService.instance().setStreamStatus(1,kFALSE)
# input data file
inputData = TFile(args.inputData)
# input data histogram
hData = inputData.Get(args.dataHistname)
# input sig file
inputSig = TFile(args.inputSig)
sqrtS = args.sqrtS
for mass in masses:
print ">> Creating datacard and workspace for %s resonance with m = %i GeV..."%(args.final_state, int(mass))
hSig = inputSig.Get( "h_" + args.final_state + "_" + str(int(mass)) )
# calculate acceptance of the dijet mass cut
sigAcc = hSig.Integral(hSig.GetXaxis().FindBin(args.massMin),hSig.GetXaxis().FindBin(args.massMax))/hSig.Integral(1,hSig.GetXaxis().FindBin(args.massMax))
mjj = RooRealVar('mjj','mjj',args.massMin,args.massMax)
rooSigHist = RooDataHist('rooSigHist','rooSigHist',RooArgList(mjj),hSig)
rooSigHist.Print()
signal = RooHistPdf('signal','signal',RooArgSet(mjj),rooSigHist)
signal.Print()
signal_norm = RooRealVar('signal_norm','signal_norm',0,-1e+04,1e+04)
示例7: __import__
#import HWW2DConfig
config = __import__(opts.modeConfig)
import RooWjj2DFitter
from ROOT import TCanvas, RooFit, RooLinkedListIter, TMath, RooRandom, TFile, \
RooDataHist, RooMsgService, TStopwatch, RooAbsPdf, RooAbsData, \
RooWorkspace, RooArgList, RooAddPdf
import pulls
timer = TStopwatch()
timer.Start()
#RooAbsPdf.defaultIntegratorConfig().setEpsRel(1e-9)
#RooAbsPdf.defaultIntegratorConfig().setEpsAbs(1e-9)
if not opts.debug:
RooMsgService.instance().setGlobalKillBelow(RooFit.WARNING)
RooMsgService.instance().addStream(RooFit.ERROR,
RooFit.Prefix(True),
RooFit.ClassName('RooExpPoly'),
RooFit.OutputFile('/dev/null'))
RooMsgService.instance().Print('v')
if hasattr(opts, "seed") and (opts.seed >= 0):
print "random seed:", opts.seed
RooRandom.randomGenerator().SetSeed(opts.seed)
mvaCutOverride = None
if hasattr(opts, "mvaCut"):
mvaCutOverride = opts.mvaCut
mjjArgs = []
示例8: RooObject
ntuple_file = None
if args[0] in input_data.keys():
ntuple_file = input_data[args[0]]
from P2VV.Load import P2VVLibrary
from P2VV.Load import RooFitOutput
from P2VV.RooFitWrappers import *
from itertools import product
from ROOT import RooCBShape as CrystalBall
from P2VV.Parameterizations.GeneralUtils import valid_combinations
#from P2VV.Load import RooFitOutput
from ROOT import RooMsgService
RooMsgService.instance().addStream(RooFit.DEBUG,RooFit.Topic(RooFit.Generation))
## RooMsgService.instance().addStream(RooFit.DEBUG,RooFit.Topic(RooFit.Integration))
obj = RooObject( workspace = 'w')
w = obj.ws()
from math import pi
t = RealVar('time', Title = 'decay time', Unit='ps', Observable = True, MinMax=(0.3, 14))
m = RealVar('mass', Title = 'B mass', Unit = 'MeV', Observable = True, MinMax = (5250, 5550))
nPV = RealVar('nPV', Title = 'nPV', Observable = True, MinMax = (0, 15))
mpsi = RealVar('mdau1', Title = 'J/psi mass', Unit = 'MeV', Observable = True, MinMax = (3030, 3150))
st = RealVar('sigmat',Title = '#sigma(t)', Unit = 'ps', Observable = True, MinMax = (0.0001, 0.12))
# Categories
hlt1_biased = Category('hlt1_biased', States = {'biased' : 1, 'not_biased' : 0}, Observable = True)
hlt1_unbiased = Category('hlt1_unbiased_dec', States = {'unbiased' : 1, 'not_unbiased' : 0}, Observable = True)
示例9: setConstantIfSoConfigured
# set constant what is supposed to be constant
setConstantIfSoConfigured(config, fitpdf)
# set up fitting options
fitopts = [ RooFit.Timer(), RooFit.Save(),
RooFit.Strategy(config['FitConfig']['Strategy']),
RooFit.Optimize(config['FitConfig']['Optimize']),
RooFit.Offset(config['FitConfig']['Offset']),
RooFit.NumCPU(config['FitConfig']['NumCPU']) ]
# set up blinding for data
fitopts.append(RooFit.Verbose(not (config['IsData'] and config['Blinding'])))
if config['IsData'] and config['Blinding']:
from ROOT import RooMsgService
RooMsgService.instance().setGlobalKillBelow(RooFit.WARNING)
fitopts.append(RooFit.PrintLevel(-1))
fitOpts = RooLinkedList()
for o in fitopts: fitOpts.Add(o)
# fit
rawfitresult = fitpdf.fitTo(ds, fitOpts)
# pretty-print the result
from B2DXFitters.FitResult import getDsHBlindFitResult
result = getDsHBlindFitResult(config['IsData'], config['Blinding'],
rawfitresult)
print result
# write raw fit result and workspace to separate ROOT files
from ROOT import TFile
示例10: main
#.........這裏部分代碼省略.........
help="Define a range of masses to be produced. Format: min max step",
metavar = ('MIN', 'MAX', 'STEP')
)
mass_group.add_argument("--masslist",
help = "List containing mass information"
)
args = parser.parse_args()
fit_functions = args.fit_functions.split(",")
# mass points for which resonance shapes will be produced
masses = []
if args.fitBonly:
masses.append(750)
else:
if args.massrange != None:
MIN, MAX, STEP = args.massrange
masses = range(MIN, MAX+STEP, STEP)
elif args.masslist != None:
# A mass list was provided
print "Will create mass list according to", args.masslist
masslist = __import__(args.masslist.replace(".py",""))
masses = masslist.masses
else:
masses = args.mass
# sort masses
masses.sort()
# import ROOT stuff
from ROOT import gStyle, TFile, TH1F, TH1D, TGraph, kTRUE, kFALSE, TCanvas, TLegend, TPad, TLine
from ROOT import RooHist, RooRealVar, RooDataHist, RooArgList, RooArgSet, RooAddPdf, RooProdPdf, RooEffProd, RooFit, RooGenericPdf, RooWorkspace, RooMsgService, RooHistPdf, RooExtendPdf
if not args.debug:
RooMsgService.instance().setSilentMode(kTRUE)
RooMsgService.instance().setStreamStatus(0,kFALSE)
RooMsgService.instance().setStreamStatus(1,kFALSE)
# input data file
#inputData = TFile(limit_config.get_data_input(args.analysis))
# input data histogram
#hData = inputData.Get(args.dataHistname)
#hData.SetDirectory(0)
data_file = TFile(analysis_config.get_b_histogram_filename(args.analysis, "BJetPlusX_2012"))
hData = data_file.Get("BHistograms/h_pfjet_mjj")
hData.SetDirectory(0)
# input sig file
if not args.fitSignal:
print "[create_datacards] INFO : Opening resonance shapes file at " + limit_config.get_resonance_shapes(args.analysis, args.model)
inputSig = TFile(limit_config.get_resonance_shapes(args.analysis, args.model), "READ")
sqrtS = args.sqrtS
# mass variable
mjj = RooRealVar('mjj','mjj',float(args.massMin),float(args.massMax))
# integrated luminosity and signal cross section
lumi = args.lumi
signalCrossSection = 1. # set to 1. so that the limit on r can be interpreted as a limit on the signal cross section
if args.correctTrigger:
trigger_efficiency_pdf = trigger_efficiency.get_pdf(args.analysis, mjj)
trigger_efficiency_formula = trigger_efficiency.get_formula(args.analysis, mjj)
示例11: alpha
def alpha(channel):
nElec = channel.count('e')
nMuon = channel.count('m')
nLept = nElec + nMuon
nBtag = channel.count('b')
# Channel-dependent settings
# Background function. Semi-working options are: EXP, EXP2, EXPN, EXPTAIL
if nLept == 0:
treeName = 'SR'
signName = 'XZh'
colorVjet = sample['DYJetsToNuNu']['linecolor']
triName = "HLT_PFMET"
leptCut = "0==0"
topVeto = selection["TopVetocut"]
massVar = "X_cmass"
binFact = 1
#fitFunc = "EXP"
#fitFunc = "EXP2"
#fitFunc = "EXPN"
#fitFunc = "EXPTAIL"
fitFunc = "EXPN" if nBtag < 2 else "EXP"
fitAltFunc = "EXPTAIL" if nBtag < 2 else "EXPTAIL"
fitFuncVjet = "ERFEXP" if nBtag < 2 else "ERFEXP"
fitFuncVV = "EXPGAUS"
fitFuncTop = "GAUS2"
elif nLept == 1:
treeName = 'WCR'
signName = 'XWh'
colorVjet = sample['WJetsToLNu']['linecolor']
triName = "HLT_Ele" if nElec > 0 else "HLT_Mu"
leptCut = "isWtoEN" if nElec > 0 else "isWtoMN"
topVeto = selection["TopVetocut"]
massVar = "X_mass"
binFact = 2
if nElec > 0:
fitFunc = "EXP" if nBtag < 2 else "EXP"
fitAltFunc = "EXPTAIL" if nBtag < 2 else "EXPTAIL"
else:
fitFunc = "EXPTAIL" if nBtag < 2 else "EXP"
fitAltFunc = "EXPN" if nBtag < 2 else "EXPTAIL"
fitFuncVjet = "ERFEXP" if nBtag < 2 else "ERFEXP"
fitFuncVV = "EXPGAUS"
fitFuncTop = "GAUS3" if nBtag < 2 else "GAUS2"
else:
treeName = 'XZh'
signName = 'XZh'
colorVjet = sample['DYJetsToLL']['linecolor']
triName = "HLT_Ele" if nElec > 0 else "HLT_Mu"
leptCut = "isZtoEE" if nElec > 0 else "isZtoMM"
topVeto = "0==0"
massVar = "X_mass"
binFact = 5
if nElec > 0:
fitFunc = "EXP" if nBtag < 2 else "EXP"
fitAltFunc = "POW" if nBtag < 2 else "POW"
else:
fitFunc = "EXP" if nBtag < 2 else "EXP"
fitAltFunc = "POW" if nBtag < 2 else "POW"
fitFuncVjet = "ERFEXP" if nBtag < 2 else "EXP"
fitFuncVV = "EXPGAUS2"
fitFuncTop = "GAUS"
btagCut = selection["2Btag"] if nBtag == 2 else selection["1Btag"]
print "--- Channel", channel, "---"
print " number of electrons:", nElec, " muons:", nMuon, " b-tags:", nBtag
print " read tree:", treeName, "and trigger:", triName
if ALTERNATIVE: print " using ALTERNATIVE fit functions"
print "-"*11*2
# Silent RooFit
RooMsgService.instance().setGlobalKillBelow(RooFit.FATAL)
#*******************************************************#
# #
# Variables and selections #
# #
#*******************************************************#
# Define all the variables from the trees that will be used in the cuts and fits
# this steps actually perform a "projection" of the entire tree on the variables in thei ranges, so be careful once setting the limits
X_mass = RooRealVar( massVar, "m_{X}" if nLept > 0 else "m_{T}^{X}", XBINMIN, XBINMAX, "GeV")
J_mass = RooRealVar( "fatjet1_prunedMassCorr", "corrected pruned mass", HBINMIN, HBINMAX, "GeV")
CSV1 = RooRealVar( "fatjet1_CSVR1", "", -1.e99, 1.e4 )
CSV2 = RooRealVar( "fatjet1_CSVR2", "", -1.e99, 1.e4 )
nBtag = RooRealVar( "fatjet1_nBtag", "", 0., 4 )
CSVTop = RooRealVar( "bjet1_CSVR", "", -1.e99, 1.e4 )
isZtoEE = RooRealVar("isZtoEE", "", 0., 2 )
isZtoMM = RooRealVar("isZtoMM", "", 0., 2 )
isWtoEN = RooRealVar("isWtoEN", "", 0., 2 )
isWtoMN = RooRealVar("isWtoMN", "", 0., 2 )
weight = RooRealVar( "eventWeightLumi", "", -1.e9, 1. )
# Define the RooArgSet which will include all the variables defined before
# there is a maximum of 9 variables in the declaration, so the others need to be added with 'add'
variables = RooArgSet(X_mass, J_mass, CSV1, CSV2, nBtag, CSVTop)
variables.add(RooArgSet(isZtoEE, isZtoMM, isWtoEN, isWtoMN, weight))
#.........這裏部分代碼省略.........
示例12: alpha
def alpha(channel):
nElec = channel.count("e")
nMuon = channel.count("m")
nLept = nElec + nMuon
nBtag = channel.count("b")
# Channel-dependent settings
# Background function. Semi-working options are: EXP, EXP2, EXPN, EXPTAIL
if nLept == 0:
treeName = "SR"
signName = "XZh"
colorVjet = sample["DYJetsToNuNu"]["linecolor"]
triName = "HLT_PFMET"
leptCut = "0==0"
topVeto = selection["TopVetocut"]
massVar = "X_cmass"
binFact = 1
fitFunc = "EXPN" if nBtag < 2 else "EXPN"
fitAltFunc = "EXPTAIL" if nBtag < 2 else "EXPTAIL"
fitFuncVjet = "ERFEXP" if nBtag < 2 else "EXP"
fitAltFuncVjet = "POL" if nBtag < 2 else "POL"
fitFuncVV = "EXPGAUS" if nBtag < 2 else "EXPGAUS"
fitFuncTop = "GAUS2"
elif nLept == 1:
treeName = "WCR"
signName = "XWh"
colorVjet = sample["WJetsToLNu"]["linecolor"]
triName = "HLT_Ele" if nElec > 0 else "HLT_Mu"
leptCut = "isWtoEN" if nElec > 0 else "isWtoMN"
topVeto = selection["TopVetocut"]
massVar = "X_mass"
binFact = 2
if nElec > 0:
fitFunc = "EXPTAIL" if nBtag < 2 else "EXPN"
fitAltFunc = "EXPN" if nBtag < 2 else "POW"
else:
fitFunc = "EXPN" if nBtag < 2 else "EXPN"
fitAltFunc = "EXPTAIL" if nBtag < 2 else "POW"
fitFuncVjet = "ERFEXP" if nBtag < 2 else "EXP"
fitAltFuncVjet = "POL" if nBtag < 2 else "POL"
fitFuncVV = "EXPGAUS" if nBtag < 2 else "EXPGAUS"
fitFuncTop = "GAUS3" if nBtag < 2 else "GAUS2"
else:
treeName = "XZh"
signName = "XZh"
colorVjet = sample["DYJetsToLL"]["linecolor"]
triName = "HLT_Ele" if nElec > 0 else "HLT_Mu"
leptCut = "isZtoEE" if nElec > 0 else "isZtoMM"
topVeto = "X_dPhi>2.5"
massVar = "X_mass"
binFact = 2
if nElec > 0:
fitFunc = "EXPTAIL" if nBtag < 2 else "EXPTAIL"
fitAltFunc = "POW" if nBtag < 2 else "POW"
else:
fitFunc = "EXPTAIL" if nBtag < 2 else "EXPTAIL"
fitAltFunc = "POW" if nBtag < 2 else "POW"
fitFuncVjet = "ERFEXP" if nBtag < 2 and nElec < 1 else "EXP"
fitAltFuncVjet = "POL" if nBtag < 2 else "POL"
fitFuncVV = "EXPGAUS2" if nBtag < 2 else "EXPGAUS2"
fitFuncTop = "GAUS"
btagCut = selection["2Btag"] if nBtag == 2 else selection["1Btag"]
print "--- Channel", channel, "---"
print " number of electrons:", nElec, " muons:", nMuon, " b-tags:", nBtag
print " read tree:", treeName, "and trigger:", triName
if ALTERNATIVE:
print " using ALTERNATIVE fit functions"
print "-" * 11 * 2
# Silent RooFit
RooMsgService.instance().setGlobalKillBelow(RooFit.FATAL)
# *******************************************************#
# #
# Variables and selections #
# #
# *******************************************************#
# Define all the variables from the trees that will be used in the cuts and fits
# this steps actually perform a "projection" of the entire tree on the variables in thei ranges, so be careful once setting the limits
X_mass = RooRealVar(massVar, "m_{X}" if nLept > 0 else "m_{T}^{X}", XBINMIN, XBINMAX, "GeV")
J_mass = RooRealVar("fatjet1_prunedMassCorr", "jet corrected pruned mass", HBINMIN, HBINMAX, "GeV")
CSV1 = RooRealVar("fatjet1_CSVR1", "", -1.0e99, 1.0e4)
CSV2 = RooRealVar("fatjet1_CSVR2", "", -1.0e99, 1.0e4)
nB = RooRealVar("fatjet1_nBtag", "", 0.0, 4)
CSVTop = RooRealVar("bjet1_CSVR", "", -1.0e99, 1.0e4)
X_dPhi = RooRealVar("X_dPhi", "", 0.0, 3.15)
isZtoEE = RooRealVar("isZtoEE", "", 0.0, 2)
isZtoMM = RooRealVar("isZtoMM", "", 0.0, 2)
isWtoEN = RooRealVar("isWtoEN", "", 0.0, 2)
isWtoMN = RooRealVar("isWtoMN", "", 0.0, 2)
weight = RooRealVar("eventWeightLumi", "", -1.0e9, 1.0)
# Define the RooArgSet which will include all the variables defined before
# there is a maximum of 9 variables in the declaration, so the others need to be added with 'add'
variables = RooArgSet(X_mass, J_mass, CSV1, CSV2, nB, CSVTop, X_dPhi)
variables.add(RooArgSet(isZtoEE, isZtoMM, isWtoEN, isWtoMN, weight))
#.........這裏部分代碼省略.........
示例13: setup_workspace
def setup_workspace():
import ROOT
from ROOT import RooWorkspace, gROOT, gStyle, RooAbsReal, RooMsgService, RooFit
#from ROOT import RooFit, gROOT, gDirectory, gStyle, gPad, TTree, RooCmdArg,RooBinning
#from ROOT import RooRealVar, RooMappedCategory, RooCategory, RooFormulaVar, RooAbsData
#from ROOT import RooBMixDecay, RooMCStudy, RooAddModel, RooEffProd, RooMsgService
#from ROOT import RooWorkspace, TCanvas, TFile, kFALSE, kTRUE, RooDataSet, TStopwatch
#from ROOT import RooArgSet, RooArgList, RooRandom, RooMinuit, RooAbsReal, RooDataHist
#from ROOT import TBrowser, TH2F, TF1, TH1F, RooGenericPdf, RooLinkedList
gROOT.SetStyle("Plain")
gStyle.SetPalette(1)
gStyle.SetOptStat(0)
gStyle.SetOptFit(0)
gStyle.SetOptStat(1111)
gStyle.SetOptFit(10111)
gStyle.SetOptTitle(1)
#RooAbsReal.defaultIntegratorConfig().Print()
#RooAbsReal.defaultIntegratorConfig().setEpsAbs(1e-10)
#RooAbsReal.defaultIntegratorConfig().setEpsRel(1e-10)
RooAbsReal.defaultIntegratorConfig().Print()
print "Numeric integration set up" #TODO: is the integration acceptable?
##This controls the logging output from RooFit
#RooMsgService.instance().addStream(RooFit.DEBUG,RooFit.Topic(RooFit.Fitting))
RooMsgService.instance().deleteStream(1)
#RooMsgService.instance().addStream(RooFit.INFO,RooFit.Topic(RooFit.Generation + RooFit.Minization + RooFit.Plotting + RooFit.Fitting + RooFit.Integration + RooFit.LinkStateMgmt + RooFit.Eval + RooFit.Caching + RooFit.Optimization + RooFit.ObjectHandling + RooFit.InputArguments + RooFit.Tracing + RooFit.Contents + RooFit.DataHandling + RooFit.NumericIntegration))
RooMsgService.instance().addStream(RooFit.INFO,RooFit.Topic(RooFit.LinkStateMgmt + RooFit.Caching + RooFit.ObjectHandling + RooFit.InputArguments + RooFit.Tracing))
RooMsgService.instance().Print()
print "Message service set up"
w = RooWorkspace("w",False)
w.factory("RAND[0,1]")
D0_M = w.factory("D0_M[1800,1930]") #TODO: define mass ranges slightly better
Del_M = w.factory("Del_M[139,155]")
D0_M.setUnit("MeV")
Del_M.setUnit("MeV")
for dst_side in ["", "dstsig", "dsthigh", "dstlow"]:
for d_side in ["", "dsig", "dhigh", "dlow"]:
name = dst_side+d_side
if dst_side == "dsthigh":
Del_M.setRange(name,148.,155.)
elif dst_side == "dstsig":
Del_M.setRange(name,143.,148.)
elif dst_side == "dstlow":
Del_M.setRange(name,139.,143.)
if d_side == "dhigh":
Del_M.setRange(name,1885.,1930.)
elif d_side == "dsig":
Del_M.setRange(name,1835.,1885.)
elif d_side == "dlow":
Del_M.setRange(name,1800.,1835.)
w.defineSet("args","D0_M,Del_M")
w.defineSet("argsPreCut","D0_M,Del_M,RAND")
w.factory("RooGaussian::D0M_Sig_Gaus1(D0_M,D0M_Sig_Gaus_Mean[1865,1850,1880],D0M_Sig_Gaus_Sigma1[10,1,30])")
w.factory("RooGaussian::D0M_Sig_Gaus2(D0_M,D0M_Sig_Gaus_Mean,D0M_Sig_Gaus_Sigma2[3,1,30])")
w.factory("SUM::D0M_Sig_Gaus(D0M_Sig_Gaus1_Frac[0.8,0,1]*D0M_Sig_Gaus1,D0M_Sig_Gaus2)")
w.factory("RooGaussian::D0M_MisId_Gaus1(D0_M,D0M_MisId_Gaus_Mean[1800,1740,1820],D0M_Sig_Gaus_Sigma1)")
w.factory("RooGaussian::D0M_MisId_Gaus2(D0_M,D0M_MisId_Gaus_Mean,D0M_Sig_Gaus_Sigma2)")
w.factory("SUM::D0M_MisId_Gaus(D0M_Sig_Gaus1_Frac*D0M_MisId_Gaus1,D0M_MisId_Gaus2)")
w.factory("RooChebychev::D0M_Bkg_Poly(D0_M,{D0M_Bkg_Poly_a1[0,-1,1]})")
w.factory("RooGaussian::DelM_Sig_Gaus1(Del_M,DelM_Sig_Gaus_Mean[145.5,143,148],DelM_Sig_Gaus_Sigma1[1,0,5] )")
w.factory("RooGaussian::DelM_Sig_Gaus2(Del_M,DelM_Sig_Gaus_Mean,DelM_Sig_Gaus_Sigma2[.1,0,2] )")
w.factory("SUM::DelM_Sig_Gaus(DelM_Sig_Gaus1_Frac[0.8,0,1]*DelM_Sig_Gaus1,DelM_Sig_Gaus2)")
w.factory("RooDstD0BG::DelM_Bkg(Del_M,DelM_Bkg_m0[139.5,134,144],DelM_Bkg_c[80,0,1000],DelM_Bkg_a[-1,-100,10],DelM_Bkg_b[0.2,-0.2,10])")
w.factory("PROD::Sig(DelM_Sig_Gaus,D0M_Sig_Gaus)")
w.factory("PROD::Comb(DelM_Bkg,D0M_Bkg_Poly)")
w.factory("PROD::MisId(DelM_Sig_Gaus,D0M_MisId_Gaus)")
w.factory("PROD::Prompt(DelM_Bkg,D0M_Sig_Gaus)")
w.factory("SUM::Final_PDF(N_Sig[10000,0,50000]*Sig,N_Prompt[5000,0,20000]*Prompt,N_Comb[10000,0,50000]*Comb,N_MisId[500,0,5000]*MisId)")
return w
示例14: bayesian
def bayesian(self, ws, debug = 0):
if self.sBayes not in self.items:
if debug>0:
print self.legend, 'no Bayesian Calculator section in the config file'
print self.legend, 'cannot configure Bayesian calculator'
return {'status':'fail'}
legend = '['+self.sBayes+']:'
_name = 'exostBayes'
# getting items as a dictionary
bayes_items = {}
bayes_items.update(self.items[self.sBayes])
print legend, 'Configuring Bayesian calculator... '
# check if a CL is specified
m_conf_name = self.check_value(self.sBayes, 'model_config')
if m_conf_name == -1:
print legend, 'Error: model config is not specified'
print legend, 'Error:', self.sBayes, 'cannot be configured'
return {'status':'fail'}
# check if data is specified
data_name = self.check_value(self.sBayes, 'data')
data_valid = False
if data_name != -1:
data_valid = True
if ws.data(data_name) != None:
data = ws.data(data_name)
else:
data_valid = False
print legend, 'Error: dataset', data_name, 'is not defined'
if data_valid == False:
print legend, 'Error:', self.sBayes, 'cannot be configured'
return {'status':'fail'}
# check if a CL is specified
conf_level = self.check_value(self.sBayes, 'confidence_level')
if conf_level == -1:
print legend, 'Warning: desired confidence level is not specified, setting to 0.90'
conf_level = 0.90
# check if a posterior plot is requested
post_plot = self.check_value(self.sBayes, 'posterior_plot')
b_post_plot = False
if post_plot == -1:
print legend, 'will generate a posterior plot'
b_post_plot = True
elif post_plot == 'True':
b_post_plot = True
else:
b_post_plot = False
# plot format
if post_plot:
plot_format = self.check_value(self.sBayes, 'plot_format')
if plot_format == -1:
plot_format = 'png'
# to suppress messgaes when pdf goes to zero
RooMsgService.instance().setGlobalKillBelow(RooFit.FATAL)
#mconf = ws.obj('exostModelConfig')
mconf = ws.obj(m_conf_name)
if mconf == None:
if debug > 0:
print self.legend, 'fail to get Model Config'
print self.legend, 'unable to configure Bayesian calculator'
print self.legend, 'calculator will not be imported into the workspace'
return {'status':'fail'}
bCalc = RooStats.BayesianCalculator(data, mconf)
bCalc.SetConfidenceLevel(float(conf_level))
############# FIXME: debug test
#bInt = bCalc.GetInterval()
#print legend, 'DEBUG3*******************************'
#
#cl = bCalc.ConfidenceLevel()
#print legend, str(cl)+'% CL central interval: [', bInt.LowerLimit(), ' - ', bInt.UpperLimit(), ']'
#print legend, 'or', str(cl+(1.0-cl)/2), '% CL limits'
##############################
#size = 1.0 - float(conf_level)
#bCalc.SetTestSize(size)
# import the calculator into the Workspace
getattr(ws, 'import')(bCalc, _name)
#.........這裏部分代碼省略.........
示例15: setup_workspace
def setup_workspace(config):
import ROOT
from ROOT import RooWorkspace, gROOT, gStyle, RooAbsReal, RooMsgService, RooFit
#from ROOT import RooFit, gROOT, gDirectory, gStyle, gPad, TTree, RooCmdArg,RooBinning
#from ROOT import RooRealVar, RooMappedCategory, RooCategory, RooFormulaVar, RooAbsData
#from ROOT import RooBMixDecay, RooMCStudy, RooAddModel, RooEffProd, RooMsgService
#from ROOT import RooWorkspace, TCanvas, TFile, kFALSE, kTRUE, RooDataSet, TStopwatch
#from ROOT import RooArgSet, RooArgList, RooRandom, RooMinuit, RooAbsReal, RooDataHist
#from ROOT import TBrowser, TH2F, TF1, TH1F, RooGenericPdf, RooLinkedList
from math import sqrt
gROOT.SetStyle("Plain")
gStyle.SetPalette(1)
gStyle.SetOptStat(0)
gStyle.SetOptFit(0)
gStyle.SetOptStat(1111)
gStyle.SetOptFit(10111)
gStyle.SetOptTitle(1)
#gROOT.ProcessLine(".L RooGaussianTrunk.cxx+")
#gROOT.ProcessLine(".L RooCBShapeTrunk.cxx+")
#gROOT.ProcessLine(".L RooChebychevTrunk.cxx+")
#from ROOT import RooGaussianTrunk, RooChebychevTrunk, RooCBShapeTrunk
#RooAbsReal.defaultIntegratorConfig().Print()
RooAbsReal.defaultIntegratorConfig().setEpsAbs(1e-8)
RooAbsReal.defaultIntegratorConfig().setEpsRel(1e-8)
#RooAbsReal.defaultIntegratorConfig().setEpsAbs(1e-6)
#RooAbsReal.defaultIntegratorConfig().setEpsRel(1e-6)
RooAbsReal.defaultIntegratorConfig().Print()
print "Numeric integration set up" #TODO: is the integration acceptable?
##This controls the logging output from RooFit
#RooMsgService.instance().addStream(RooFit.DEBUG,RooFit.Topic(RooFit.Fitting))
RooMsgService.instance().deleteStream(1)
#RooMsgService.instance().addStream(RooFit.INFO,RooFit.Topic(RooFit.Generation + RooFit.Minization + RooFit.Plotting + RooFit.Fitting + RooFit.Integration + RooFit.LinkStateMgmt + RooFit.Eval + RooFit.Caching + RooFit.Optimization + RooFit.ObjectHandling + RooFit.InputArguments + RooFit.Tracing + RooFit.Contents + RooFit.DataHandling + RooFit.NumericIntegration))
RooMsgService.instance().addStream(RooFit.INFO,RooFit.Topic(RooFit.LinkStateMgmt + RooFit.Caching + RooFit.ObjectHandling + RooFit.InputArguments + RooFit.Tracing))
RooMsgService.instance().Print()
print "Message service set up"
w = RooWorkspace("w",False)
w.factory("RAND[0,1]")
if "norm" not in config["mode"]:
D0_Mass = w.factory("D0_Mass[1815,1915]")
else:
D0_Mass = w.factory("D0_Mass[1800,1930]")
D0_Mass.setUnit("MeV")
D0_Mass.setBins(60)
Del_Mass = w.factory("Del_Mass[139,155]")
Del_Mass.setUnit("MeV")
Del_Mass.setBins(60)
if "norm" not in config["mode"]:
Dataset = w.factory("DataSet[BDT1,BDT2,BDT3]")
else:
Dataset = w.factory("DataSet[Norm]")
w.factory("classID[Sig=0,Bkg=1]")
w.factory("BDT_ada[-1,1]")
w.factory("x1_PIDe[-2,20]")
w.factory("x2_ProbNNmu[0,1]")
#D0_Mass.setRange("blinded",1700.,1900.)
if "norm" not in config["mode"]:
dataCats = ["", "BDT1", "BDT2", "BDT3"]
else:
dataCats = ["", "Norm"]
for data in dataCats:
for dst_side in ["", "delsig", "delhigh", "dellow"]:
for d_side in ["", "dsig", "dhigh", "dlow", "dhigh1", "dlow1", "dhigh2", "dlow2"]:
name = data+dst_side+d_side
if data == "BDT1":
Dataset.setRange(name,"BDT1")
elif data == "BDT2":
Dataset.setRange(name,"BDT2")
elif data == "BDT3":
Dataset.setRange(name,"BDT3")
elif data == "Norm":
Dataset.setRange(name,"Norm")
if dst_side == "delhigh":
Del_Mass.setRange(name,148.,155.)
elif dst_side == "delsig":
Del_Mass.setRange(name,143.,148.)
elif dst_side == "dellow":
Del_Mass.setRange(name,139.,143.)
if d_side == "dhigh2":
D0_Mass.setRange(name,1910.,1930.)
elif d_side == "dhigh1":
#.........這裏部分代碼省略.........