本文整理匯總了Python中ROOT.RooArgList.getSize方法的典型用法代碼示例。如果您正苦於以下問題:Python RooArgList.getSize方法的具體用法?Python RooArgList.getSize怎麽用?Python RooArgList.getSize使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類ROOT.RooArgList
的用法示例。
在下文中一共展示了RooArgList.getSize方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: findOnePe
# 需要導入模塊: from ROOT import RooArgList [as 別名]
# 或者: from ROOT.RooArgList import getSize [as 別名]
def findOnePe(hist, ws, name='x', Npe = 1):
fitPed(hist, ws, name)
x = ws.var(name)
ped = ws.pdf('ped')
pedWidth = ws.var('pedWidth')
pdfs = RooArgList(ped)
pdfList = []
fped = RooRealVar('fped', 'f_{ped}', 0.8, 0., 1.)
fractions = RooArgList(fped)
fList = []
peList = []
peMean = RooRealVar('peMean', 'mean_{pe}', 6., 0., 20.)
peWidth = RooRealVar('peWidth', 'width_{pe}', pedWidth.getVal(), 0., 10.)
for i in range(0, Npe):
pem = RooFormulaVar('pem{0}'.format(i+1), '@0+{0}*@1'.format(i+1),
RooArgList(ws.var('pedMean'), peMean))
peList.append(pem)
npepdf = RooGaussian('pe{0}pdf'.format(i+1), 'pe{0}pdf'.format(i+1),
x, pem, pedWidth)
pdfs.add(npepdf)
pdfList.append(npepdf)
fnpe = RooRealVar('fpe{0}'.format(i+1), 'fpe{0}'.format(i+1),
0.5, -0.1, 1.0)
fractions.add(fnpe)
fList.append(fnpe)
#bgMean = RooRealVar("bgMean", "bgMean", 6.0, x.getMin(), x.getMax())
bgScale = RooRealVar("bgScale", "bgScale", 0.5, -1.0, Npe + 1.0)
bgMean = RooFormulaVar("bgMean", "@[email protected]*@2",
RooArgList(peMean, ws.var('pedMean'), bgScale))
bgWidthL = RooRealVar("bgWidthL", "bgWidthL", pedWidth.getVal()*2,
0., 25.)
bgWidthR = RooRealVar("bgWidthR", "bgWidthR", pedWidth.getVal()*7,
0., 25.)
bgGauss = RooBifurGauss("bgGauss", "bgGauss", x, bgMean,
bgWidthR, bgWidthR)
if (Npe > 1):
pdfs.add(bgGauss)
else:
fractions.remove(fractions.at(fractions.getSize()-1))
## pem = RooFormulaVar('pem', '@[email protected]', RooArgList(peMean, ws.var('pedMean')))
## firstPe = RooGaussian('firstPe', 'firstPe', x, pem, peWidth)
## pdfs.Print("v")
## fractions.Print("v")
pedPlusOne = RooAddPdf('pedPlusOne', 'pedPlusOne', pdfs, fractions, True)
## pedWidth = ped.GetParameter(2)
## pedMean = ped.GetParameter(1)
## pedA = ped.GetParameter(0)
secondMax = hist.GetMaximumBin() + 1
goingDown = True
maxVal = hist.GetBinContent(secondMax)
foundMax = False
while (not foundMax) and (secondMax < hist.GetNbinsX()):
tmpVal = hist.GetBinContent(secondMax+1)
if (tmpVal < maxVal):
if not goingDown:
foundMax = True
else:
goingDown = True
maxVal = tmpVal
secondMax += 1
elif (tmpVal > maxVal):
goingDown = False
maxVal = tmpVal
secondMax += 1
else:
maxVal = tmpVal
secondMax += 1
secondMaxx = hist.GetBinCenter(secondMax)
print 'found 2nd maximum in bin',secondMax,'value',secondMaxx
## peMean.setVal(secondMaxx)
## bgMean.setVal(secondMaxx*0.6)
x.setRange('pedPlus_fit', x.getMin(), ws.var('pedMean').getVal()+pedWidth.getVal()*6.*(Npe+0))
pedPlusOne.fitTo(ws.data('ds'), RooFit.Minos(False),
RooFit.Range('pedPlus_fit'),
RooFit.PrintLevel(1))
getattr(ws, 'import')(pedPlusOne)
示例2: TCanvas
# 需要導入模塊: from ROOT import RooArgList [as 別名]
# 或者: from ROOT.RooArgList import getSize [as 別名]
# globals, and aliases
from ROOT import gPad, gStyle, gSystem, kRed, kBlue, kAzure, kGreen, kBlack
const = RooRealConstant.value
# setup
gStyle.SetOptStat('nemrou')
canvas = TCanvas('canvas', 'canvas', 800, 600)
canvas.Print('{}['.format(plotfile))
# read workspace
ffile = TFile.Open(rfile, 'read')
workspace = ffile.Get('workspace')
pdfs = RooArgList(workspace.allPdfs())
for i in range(pdfs.getSize()):
name = pdfs[i].GetName()
if name.find(mode) >= 0:
mykpdf = pdfs[i]
assert(mykpdf)
## variables
time = RooRealVar('time', 'Time [ps]', 0.2, 15.0)
time.setBins(bins)
time.setBins(bins*3, 'cache')
kfactor = workspace.var('kfactorVar')
kfactor.setRange(0.85, 1.05)
gamma = RooRealVar('gamma', 'gamma', 0.661, 0., 3.)
kgamma = RooProduct('kgamma', 'kgamma', RooArgList(gamma, kfactor))
dGamma = RooRealVar('dGamma', 'dGamma', -0.106, -3., 3.)
示例3: RooArgList
# 需要導入模塊: from ROOT import RooArgList [as 別名]
# 或者: from ROOT.RooArgList import getSize [as 別名]
parlist = fitresult.floatParsFinal()
cmatrix = fitresult.covarianceMatrix()
veclist = RooArgList()
for i in range(parlist.getSize()):
name = "%s_%d" % (parlist[i].GetName(), i)
veclist.add(parlist[i].clone(name))
multigauss = RooMultiVarGaussian("multigauss", "multigauss", veclist, parlist, cmatrix)
dset = multigauss.generate(RooArgSet(veclist), 1000)
fns = []
for entry in range(dset.numEntries()):
vecset = dset.get(entry)
veclist = RooArgList(vecset)
for pars in range(veclist.getSize()):
acceptance.SetParameter(pars, veclist[pars].getVal())
fns += [acceptance.Clone("%s_%d" % (acceptance.GetName(), entry))]
avgfn = BinnedAvgFunction(fns, xbincs)
avgfn.calculate()
accfns += [avgfn.get_avg_fn()]
accfnerrs += [avgfn.get_avg_fn_var()]
means = numpy.zeros(nbins, dtype=float)
varis = numpy.zeros(nbins, dtype=float)
for ibin in range(nbins):
means[ibin] = accfns[0][ibin] / accfns[1][ibin]
varis[ibin] = accfnerrs[0][ibin] + accfnerrs[1][ibin]
示例4: open
# 需要導入模塊: from ROOT import RooArgList [as 別名]
# 或者: from ROOT.RooArgList import getSize [as 別名]
usig2 = 0.
totalYield = 0.
sigYield = 0.
sigErrs = {}
sigYieldFilename = 'last_H%i_%s_%iJets_signalYield.txt' % (opts.mH,
modeString, opts.Nj)
sigYieldsFile = open(sigYieldFilename, 'w')
WpJNonPoissonError = 0
print
print '-------------------------------'
print 'Yields in signal box'
print '-------------------------------'
for i in range(0, yields.getSize()):
theName = yields.at(i).GetName()
if theName[0] == 'n':
totalYield += yields.at(i).getVal()
theIntegral = 1.
if (theName == 'nDiboson'):
theIntegral = dibosonInt.getVal()/dibosonFullInt.getVal()
elif (theName == 'nWjets'):
theIntegral = WpJInt.getVal()/WpJFullInt.getVal()
if (yields.at(i).getError()**2 > yields.at(i).getVal()):
WpJNonPoissonError = sqrt(yields.at(i).getError()**2 - \
yields.at(i).getVal())
else:
WpJNonPoissonError = 0.
elif (theName == 'nTTbar'):
theIntegral = ttbarInt.getVal()/ttbarFullInt.getVal()
示例5: accbuilder
# 需要導入模塊: from ROOT import RooArgList [as 別名]
# 或者: from ROOT.RooArgList import getSize [as 別名]
def accbuilder(time, knots, coeffs):
# build acceptance function
from copy import deepcopy
myknots = deepcopy(knots)
mycoeffs = deepcopy(coeffs)
from ROOT import (RooBinning, RooArgList, RooPolyVar,
RooCubicSplineFun)
if (len(myknots) != len(mycoeffs) or 0 >= min(len(myknots), len(mycoeffs))):
raise ValueError('ERROR: Spline knot position list and/or coefficient'
'list mismatch')
# create the knot binning
knotbinning = WS(ws, RooBinning(time.getMin(), time.getMax(), 'knotbinning'))
for v in myknots:
knotbinning.addBoundary(v)
knotbinning.removeBoundary(time.getMin())
knotbinning.removeBoundary(time.getMax())
knotbinning.removeBoundary(time.getMin())
knotbinning.removeBoundary(time.getMax())
oldbinning, lo, hi = time.getBinning(), time.getMin(), time.getMax()
time.setBinning(knotbinning, 'knotbinning')
time.setBinning(oldbinning)
time.setRange(lo, hi)
del knotbinning
del oldbinning
del lo
del hi
# create the knot coefficients
coefflist = RooArgList()
i = 0
for v in mycoeffs:
coefflist.add(WS(ws, RooRealVar('SplineAccCoeff%u' % i,
'SplineAccCoeff%u' % i, v)))
i = i + 1
del mycoeffs
coefflist.add(one)
i = i + 1
myknots.append(time.getMax())
myknots.reverse()
fudge = (myknots[0] - myknots[1]) / (myknots[2] - myknots[1])
lastmycoeffs = RooArgList(
WS(ws, RooConstVar('SplineAccCoeff%u_coeff0' % i,
'SplineAccCoeff%u_coeff0' % i, 1. - fudge)),
WS(ws, RooConstVar('SplineAccCoeff%u_coeff1' % i,
'SplineAccCoeff%u_coeff1' % i, fudge)))
del myknots
coefflist.add(WS(ws, RooPolyVar(
'SplineAccCoeff%u' % i, 'SplineAccCoeff%u' % i,
coefflist.at(coefflist.getSize() - 2), lastmycoeffs)))
del i
# create the spline itself
tacc = WS(ws, RooCubicSplineFun('SplineAcceptance', 'SplineAcceptance', time,
'knotbinning', coefflist))
del lastmycoeffs
# make sure the acceptance is <= 1 for generation
m = max([coefflist.at(j).getVal() for j in
xrange(0, coefflist.getSize())])
from ROOT import RooProduct
c = WS(ws, RooConstVar('SplineAccNormCoeff', 'SplineAccNormCoeff', 0.99 / m))
tacc_norm = WS(ws, RooProduct('SplineAcceptanceNormalised',
'SplineAcceptanceNormalised', RooArgList(tacc, c)))
del c
del m
del coefflist
return tacc, tacc_norm
示例6: TCanvas
# 需要導入模塊: from ROOT import RooArgList [as 別名]
# 或者: from ROOT.RooArgList import getSize [as 別名]
from ROOT import gPad, gStyle, kRed, kBlue, kAzure, kGreen, kBlack
gStyle.SetOptStat('nemrou')
canvas = TCanvas('canvas', 'canvas', 800, 600)
canvas.Print('{}['.format(plotfile))
ffile = TFile.Open(rfile, 'read')
if ifpdf:
workspace = ffile.Get('workspace')
kfactor = workspace.var('kfactorVar')
kfactor.setRange(0.9, 1.1)
pdfs = RooArgList(workspace.allPdfs())
for i in range(pdfs.getSize()):
fr = kfactor.frame()
pdfs[i].plotOn(fr, RooFit.LineColor(kBlack), RooFit.FillColor(kAzure+1),
RooFit.DrawOption('lf')) # FIXME: doesn't draw the line!'
fr.Draw()
canvas.Print(plotfile)
else:
modes = {}
klist = ffile.GetListOfKeys()
for item in klist:
name = item.GetName()
if not name.startswith('mBresn'):
print 'MSG: Skipping, unknown object: %s' % name
continue # ntuples are named mBresn_*
sample = name.split('_')
modes[sample[1]] = modes.get(sample[1],[]) + [item] # up and down for each mode
示例7: buildBDecayTimePdf
# 需要導入模塊: from ROOT import RooArgList [as 別名]
# 或者: from ROOT.RooArgList import getSize [as 別名]
#.........這裏部分代碼省略.........
'DeltaGamma': DeltaGamma,
'DeltaM': DeltaM,
'C': C, 'D': D, 'Dbar':Dbar, 'S': S, 'Sbar': Sbar,
'timeresmodel': timeresmodel,
'acceptance': acceptance,
'timeerrpdf': timeerrpdf,
'mistagpdf': mistagpdf,
'mistagobs': mistagobs,
'kfactorpdf': kfactorpdf,
'kvar': kvar,
'aprod': aprod,
'adet': adet,
'atageff': atageff
}
print 'buildBDecayTimePdf('
for kw in kwargs:
print '\t%s = %s' % (kw, kwargs[kw])
print '\t)'
print 72 * '#'
# constants used
zero = WS(ws, RooConstVar('zero', 'zero', 0.))
one = WS(ws, RooConstVar('one', 'one', 1.))
if None == aprod: aprod = zero
if None == adet: adet = zero
if None == atageff: atageff = [ zero ]
if None == mistagpdf:
mistagobs = None
else: # None != mistagpdf
if None == mistagobs:
raise NameError('mistag pdf set, but no mistag observable given')
# if no time resolution model is set, fake one
if timeresmodel == None:
timeresmodel = WS(ws, RooTruthModel('%s_TimeResModel' % name,
'%s time resolution model' % name, time))
elif timeresmodel == 'Gaussian':
timeresmodel = WS(ws, RooGaussModel('%s_TimeResModel' % name,
'%s time resolution model' % name, time, zero, timeerr))
# apply acceptance (if needed)
timeresmodel = applyBinnedAcceptance(
config, ws, time, timeresmodel, acceptance)
if config['UseKFactor']:
timeresmodel = applyKFactorSmearing(config, ws, time, timeresmodel,
kvar, kfactorpdf, [ Gamma, DeltaGamma, DeltaM ])
if config['ParameteriseIntegral']:
parameteriseResModelIntegrals(config, ws, timeerrpdf, timeerr, timeresmodel)
# if there is a per-event mistag distributions and we need to do things
# correctly
if None != mistagpdf:
otherargs = [ mistagobs, RooArgList(*mistagpdf), RooArgList(*tageff) ]
else:
otherargs = [ RooArgList(*tageff) ]
bcalib = RooArgList()
bbarcalib = RooArgList()
for t in mistag:
bcalib.add(t[0])
if len(t) > 1:
bbarcalib.add(t[1])
otherargs.append(bcalib)
if (bbarcalib.getSize()):
otherargs.append(bbarcalib)
otherargs += [ aprod, adet, RooArgList(*atageff) ]
flag = 0
if 'Bs2DsK' == name and 'CADDADS' == config['Bs2DsKCPObs']:
flag = DecRateCoeff.AvgDelta
# build coefficients to go into RooBDecay
cosh = WS(ws, DecRateCoeff('%s_cosh' % name, '%s_cosh' % name,
DecRateCoeff.CPEven, qf, qt, one, one, *otherargs))
sinh = WS(ws, DecRateCoeff('%s_sinh' % name, '%s_sinh' % name,
flag | DecRateCoeff.CPEven, qf, qt, D, Dbar, *otherargs))
cos = WS(ws, DecRateCoeff('%s_cos' % name, '%s_cos' % name,
DecRateCoeff.CPOdd, qf, qt, C, C, *otherargs))
sin = WS(ws, DecRateCoeff('%s_sin' % name, '%s_sin' % name,
flag | DecRateCoeff.CPOdd | DecRateCoeff.Minus,
qf, qt, S, Sbar, *otherargs))
del flag
del otherargs
# build (raw) time pdf
tau = WS(ws, Inverse('%sTau' % Gamma.GetName(),
'%s #tau' % Gamma.GetName(), Gamma))
retVal = WS(ws, RooBDecay(
'%s_RawTimePdf' % name, '%s raw time pdf' % name,
time, tau, DeltaGamma, cosh, sinh, cos, sin,
DeltaM, timeresmodel, RooBDecay.SingleSided))
retVal = applyDecayTimeErrPdf(config, name, ws, time, timeerr, qt, qf,
mistagobs, retVal, timeerrpdf, mistagpdf)
# if we do not bin the acceptance, we apply it here
retVal = applyUnbinnedAcceptance(config, name, ws, retVal, acceptance)
retVal.SetNameTitle('%s_TimePdf' % name, '%s full time pdf' % name)
# return the copy of retVal which is inside the workspace
return WS(ws, retVal)
示例8: readDataSet
# 需要導入模塊: from ROOT import RooArgList [as 別名]
# 或者: from ROOT.RooArgList import getSize [as 別名]
#.........這裏部分代碼省略.........
args.add(iset.find(n))
var = WS(fws, RooFormulaVar(name, name, name, args))
addiset.addClone(var)
else:
for dsname in ((config['DataSetNames'], )
if type(config['DataSetNames']) == str else
config['DataSetNames']):
break
leaf = f.Get(dsname).GetLeaf(name)
if None == leaf:
leaf = f.Get(dsname).GetLeaf(name + '_idx')
if leaf.GetTypeName() in (
'char', 'unsigned char', 'Char_t', 'UChar_t',
'short', 'unsigned short', 'Short_t', 'UShort_t',
'int', 'unsigned', 'unsigned int', 'Int_t', 'UInt_t',
'long', 'unsigned long', 'Long_t', 'ULong_t',
'Long64_t', 'ULong64_t', 'long long',
'unsigned long long'):
var = WS(fws, RooCategory(name, name))
tit = obj.typeIterator()
ROOT.SetOwnership(tit, True)
while True:
tobj = tit.Next()
if None == tobj: break
var.defineType(tobj.GetName(), tobj.getVal())
else:
var = WS(fws, RooRealVar(name, name, -sys.float_info.max,
sys.float_info.max))
iset.addClone(var)
for dsname in ((config['DataSetNames'], )
if type(config['DataSetNames']) == str else
config['DataSetNames']):
tmpds = WS(fws, RooDataSet(dsname, dsname,f.Get(dsname), iset), [])
if 0 != addiset.getSize():
# need to add columns with RooFormulaVars
tmpds.addColumns(addiset)
del tmpds
# local data conversion routine
def doIt(config, rangeName, dsname, sname, names, dmap, dset, ddata, fws):
sdata = fws.obj(dsname)
if None == sdata: return 0
if None != config['DataSetCuts']:
# apply any user-supplied cuts
newsdata = sdata.reduce(config['DataSetCuts'])
ROOT.SetOwnership(newsdata, True)
del sdata
sdata = newsdata
del newsdata
sset = sdata.get()
smap = { }
for k in names:
smap[k] = sset.find(config['DataSetVarNameMapping'][k])
if 'sample' in smap.keys() and None == smap['sample'] and None != sname:
smap.pop('sample')
dmap['sample'].setLabel(sname)
if None in smap.values():
raise NameError('Some variables not found in source: %s' % str(smap))
# # additional complication: toys save decay time in ps, data is in nm
# # figure out which time conversion factor to use
# timeConvFactor = 1e9 / 2.99792458e8
# meantime = sdata.mean(smap['time'])
# if ((dmap['time'].getMin() <= meantime and
# meantime <= dmap['time'].getMax() and config['IsToy']) or
# not config['IsToy']):
# timeConvFactor = 1.
# print 'DEBUG: Importing data sample meantime = %f, timeConvFactor = %f' % (
示例9: buildSplineAcceptance
# 需要導入模塊: from ROOT import RooArgList [as 別名]
# 或者: from ROOT.RooArgList import getSize [as 別名]
def buildSplineAcceptance(
ws, # workspace into which to import
time, # time variable
pfx, # prefix to be used in names
knots, # knots
coeffs, # acceptance coefficients
floatParams = False, # float acceptance parameters
debug = False # debug printout
):
"""
build a spline acceptance function
ws -- workspace into which to import acceptance functions
time -- time observable
pfx -- prefix (mode name) from which to build object names
knots -- list of knot positions
coeffs -- spline coefficients
floatParams -- if True, spline acceptance parameters will be floated
debug -- if True, print some debugging output
returns a pair of acceptance functions, first the unnormalised one for
fitting, then the normalised one for generation
The minimum and maximum of the range of the time variable implicitly
defines the position of the first and last knot. The other knot positions
are passed in knots. Conversely, the coeffs parameter records the height
of the sline at all but the last two knot positions. The next to last knot
coefficient is fixed to 1.0, thus fixing the overall scale of the
acceptance function. The spline coefficient for the last knot is fixed by
extrapolating linearly from the two knots before; this prevents
statistical fluctuations at the low stats high lifetime end of the
spectrum to curve the spline.
"""
# build acceptance function
from copy import deepcopy
myknots = deepcopy(knots)
mycoeffs = deepcopy(coeffs)
from ROOT import (RooBinning, RooArgList, RooPolyVar, RooCubicSplineFun,
RooConstVar, RooProduct, RooRealVar)
if (len(myknots) != len(mycoeffs) or 0 >= min(len(myknots), len(mycoeffs))):
raise ValueError('ERROR: Spline knot position list and/or coefficient'
'list mismatch')
one = WS(ws, RooConstVar('one', '1', 1.0))
# create the knot binning
knotbinning = WS(ws, RooBinning(time.getMin(), time.getMax(),
'%s_knotbinning' % pfx))
for v in myknots:
knotbinning.addBoundary(v)
knotbinning.removeBoundary(time.getMin())
knotbinning.removeBoundary(time.getMax())
knotbinning.removeBoundary(time.getMin())
knotbinning.removeBoundary(time.getMax())
oldbinning, lo, hi = time.getBinning(), time.getMin(), time.getMax()
time.setBinning(knotbinning, '%s_knotbinning' % pfx)
time.setBinning(oldbinning)
time.setRange(lo, hi)
del knotbinning
del oldbinning
del lo
del hi
# create the knot coefficients
coefflist = RooArgList()
i = 0
for v in mycoeffs:
if floatParams:
coefflist.add(WS(ws, RooRealVar('%s_SplineAccCoeff%u' % (pfx, i),
'v_{%u}' % (i+1), v, 0., 3.)))
else:
coefflist.add(WS(ws, RooConstVar('%s_SplineAccCoeff%u' % (pfx, i),
'v_{%u}' % (i+1), v)))
i = i + 1
del mycoeffs
coefflist.add(one)
i = i + 1
myknots.append(time.getMax())
myknots.reverse()
fudge = (myknots[0] - myknots[1]) / (myknots[2] - myknots[1])
lastmycoeffs = RooArgList(
WS(ws, RooConstVar('%s_SplineAccCoeff%u_coeff0' % (pfx, i),
'%s_SplineAccCoeff%u_coeff0' % (pfx, i), 1. - fudge)),
WS(ws, RooConstVar('%s_SplineAccCoeff%u_coeff1' % (pfx, i),
'%s_SplineAccCoeff%u_coeff1' % (pfx, i), fudge)))
del myknots
coefflist.add(WS(ws, RooPolyVar(
'%s_SplineAccCoeff%u' % (pfx, i), 'v_{%u}' % (i+1),
coefflist.at(coefflist.getSize() - 2), lastmycoeffs)))
del i
if debug:
print 'DEBUG: Spline Coeffs: %s' % str([
coefflist.at(i).getVal() for i in xrange(0, coefflist.getSize())
])
# create the spline itself
tacc = WS(ws, RooCubicSplineFun('%s_SplineAcceptance' % pfx,
'%s_SplineAcceptance' % pfx, time, '%s_knotbinning' % pfx,
coefflist))
del lastmycoeffs
if not floatParams:
# make sure the acceptance is <= 1 for generation
m = max([coefflist.at(j).getVal() for j in
xrange(0, coefflist.getSize())])
#.........這裏部分代碼省略.........