當前位置: 首頁>>代碼示例>>Python>>正文


Python WorkflowSpec.workflowName方法代碼示例

本文整理匯總了Python中ProdCommon.MCPayloads.WorkflowSpec.WorkflowSpec.workflowName方法的典型用法代碼示例。如果您正苦於以下問題:Python WorkflowSpec.workflowName方法的具體用法?Python WorkflowSpec.workflowName怎麽用?Python WorkflowSpec.workflowName使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在ProdCommon.MCPayloads.WorkflowSpec.WorkflowSpec的用法示例。


在下文中一共展示了WorkflowSpec.workflowName方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: createWorkflow

# 需要導入模塊: from ProdCommon.MCPayloads.WorkflowSpec import WorkflowSpec [as 別名]
# 或者: from ProdCommon.MCPayloads.WorkflowSpec.WorkflowSpec import workflowName [as 別名]
    def createWorkflow(self, runNumber, primaryDataset,
                       processedDataset, dataTier):
        """
        _createWorkflow_

        Create a workflow for a given run and primary dataset.  If the workflow
        has been created previously, load it and use it.
        """
        jobCache = os.path.join(self.args["ComponentDir"], "T0ASTPlugin",
                                "Run" + runNumber)
        if not os.path.exists(jobCache):
            os.makedirs(jobCache)

        workflowSpecFileName = "DQMHarvest-Run%s-%s-workflow.xml" % (runNumber, primaryDataset)
        workflowSpecPath = os.path.join(jobCache, workflowSpecFileName)

        if os.path.exists(workflowSpecPath):
            msg = "Loading existing workflow for dataset: %s\n " % primaryDataset
            msg += " => %s\n" % workflowSpecPath
            logging.info(msg)

            workflowSpec = WorkflowSpec()
            workflowSpec.load(workflowSpecPath)
            return (workflowSpec, workflowSpecPath)
            
        msg = "No workflow found for dataset: %s\n " % primaryDataset
        msg += "Looking up software version and generating workflow..."

        recoConfig = self.t0astWrapper.listRecoConfig(runNumber, primaryDataset)

        if not recoConfig["DO_RECO"]:
            logging.info("RECO disabled for dataset %s" % primaryDataset)
            return (None, None)

        globalTag = self.args.get("OverrideGlobalTag", None)
        if globalTag == None:
            globalTag = recoConfig["GLOBAL_TAG"]
            
        cmsswVersion = self.args.get("OverrideCMSSW", None)
        if cmsswVersion == None:
            cmsswVersion = recoConfig["CMSSW_VERSION"]

        datasetPath = "/%s/%s/%s" % (primaryDataset, processedDataset, dataTier)
        workflowSpec = createHarvestingWorkflow(datasetPath, self.site, 
                                                self.args["CmsPath"],
                                                self.args["ScramArch"],
                                                cmsswVersion, globalTag,
                                                configFile=self.args["ConfigFile"],
                                                DQMServer=self.args['DQMServer'],
                                                proxyLocation=self.args['proxyLocation'],
                                                DQMCopyToCERN=self.args['DQMCopyToCERN'],
                                                doStageOut=self.args['DoStageOut'])
        
        
        workflowSpec.save(workflowSpecPath)
        msg = "Created Harvesting Workflow:\n %s" % workflowSpecPath
        logging.info(msg)
        self.publishWorkflow(workflowSpecPath, workflowSpec.workflowName())
        return (workflowSpec, workflowSpecPath)
開發者ID:giffels,項目名稱:PRODAGENT,代碼行數:61,代碼來源:T0ASTPlugin.py

示例2: createJobSpec

# 需要導入模塊: from ProdCommon.MCPayloads.WorkflowSpec import WorkflowSpec [as 別名]
# 或者: from ProdCommon.MCPayloads.WorkflowSpec.WorkflowSpec import workflowName [as 別名]
def createJobSpec(jobSpecId,workflowSpecFile, filename, runNumber, eventCount,  firstEvent = None,saveString=False,loadString=True):

    #  //
    # // Load workflow
    #//
    workflowSpec = WorkflowSpec()
    if loadString:
        workflowSpec.loadString(workflowSpecFile)
    else:
        workflowSpec.load(workflowSpecFile)

    

    #  //
    # // Create JobSpec
    #//
    jobSpec = workflowSpec.createJobSpec()
    jobName = "%s-%s" % (
        workflowSpec.workflowName(),
        runNumber
            )


    #jobSpec.setJobName(jobName)
    jobSpec.setJobName(jobSpecId)
    jobSpec.setJobType("Processing")
    jobSpec.parameters['RunNumber'] = runNumber
    jobSpec.parameters['EventCount'] = eventCount

    jobSpec.payload.operate(DefaultLFNMaker(jobSpec))

    if firstEvent != None:
        jobSpec.parameters['FirstEvent'] = firstEvent

    cfgMaker = ConfigGenerator(jobSpec)
    jobSpec.payload.operate(cfgMaker)

    if saveString:    
       return jobSpec.saveString()
    jobSpec.save(filename)
    return
開發者ID:PerilousApricot,項目名稱:CRAB2,代碼行數:43,代碼來源:EventJobSpec.py

示例3: __call__

# 需要導入模塊: from ProdCommon.MCPayloads.WorkflowSpec import WorkflowSpec [as 別名]
# 或者: from ProdCommon.MCPayloads.WorkflowSpec.WorkflowSpec import workflowName [as 別名]
    def __call__(self, collectPayload):
        """
        _operator(collectPayload)_

        Given the dataset and run in the payload, callout to DBS
        to find the files to be harvested

        """
        msg = "DBSPlugin invoked for %s" % str(collectPayload)
        logging.info(msg)


        site = self.args.get("Site", "srm.cern.ch")

        baseCache = os.path.join(self.args['ComponentDir'],
                                 "DBSPlugin")
        if not os.path.exists(baseCache):
            os.makedirs(baseCache)

        datasetCache = os.path.join(baseCache,
                                    collectPayload['PrimaryDataset'],
                                    collectPayload['ProcessedDataset'],
                                    collectPayload['DataTier'])

        if not os.path.exists(datasetCache):
            os.makedirs(datasetCache)

        workflowFile = os.path.join(
            datasetCache,
            "%s-%s-%s-DQMHarvest-Workflow.xml" % (
            collectPayload['PrimaryDataset'],
            collectPayload['ProcessedDataset'],
            collectPayload['DataTier'])
            )
        if not os.path.exists(workflowFile):
            msg = "No workflow found for dataset: %s\n " % (
                collectPayload.datasetPath(),)
            msg += "Looking up software version and generating workflow..."

            if self.args.get("OverrideGlobalTag", None) == None:
                globalTag = findGlobalTagForDataset(
                    self.dbsUrl,
                    collectPayload['PrimaryDataset'],
                    collectPayload['ProcessedDataset'],
                    collectPayload['DataTier'],
                    collectPayload['RunNumber'])
            else:
                globalTag = self.args['OverrideGlobalTag']


            if self.args.get("OverrideCMSSW", None) != None:
                cmsswVersion = self.args['OverrideCMSSW']
                msg = "Using Override for CMSSW Version %s" % (
                    self.args['OverrideCMSSW'],)
                logging.info(msg)
            else:
                cmsswVersion = findVersionForDataset(
                    self.dbsUrl,
                    collectPayload['PrimaryDataset'],
                    collectPayload['ProcessedDataset'],
                    collectPayload['DataTier'],
                    collectPayload['RunNumber'])
                msg = "Found CMSSW Version for dataset/run\n"
                msg += " Dataset %s Run %s\n" % (collectPayload.datasetPath(),
                                                 collectPayload['RunNumber'])
                msg += " CMSSW Version = %s\n " % cmsswVersion
                logging.info(msg)

            workflowSpec = createHarvestingWorkflow(
                collectPayload.datasetPath(),
                site,
                self.args['CmsPath'],
                self.args['ScramArch'],
                cmsswVersion,
                globalTag,
                configFile=self.args['ConfigFile'],
                DQMServer=self.args['DQMServer'],
                proxyLocation=self.args['proxyLocation'],
                DQMCopyToCERN=self.args['DQMCopyToCERN'],
                doStageOut=self.args['DoStageOut'])

            workflowSpec.save(workflowFile)
            msg = "Created Harvesting Workflow:\n %s" % workflowFile
            logging.info(msg)
            self.publishWorkflow(workflowFile, workflowSpec.workflowName())
        else:
            msg = "Loading existing workflow for dataset: %s\n " % (
                collectPayload.datasetPath(),)
            msg += " => %s\n" % workflowFile
            logging.info(msg)

            workflowSpec = WorkflowSpec()
            workflowSpec.load(workflowFile)




        job = {}
        jobSpec = workflowSpec.createJobSpec()
        jobName = "%s-%s-%s" % (
#.........這裏部分代碼省略.........
開發者ID:giffels,項目名稱:PRODAGENT,代碼行數:103,代碼來源:DBSPlugin.py

示例4: WorkflowSpec

# 需要導入模塊: from ProdCommon.MCPayloads.WorkflowSpec import WorkflowSpec [as 別名]
# 或者: from ProdCommon.MCPayloads.WorkflowSpec.WorkflowSpec import workflowName [as 別名]
from JobQueue.JobQueueDB import JobQueueDB
import ProdAgent.WorkflowEntities.Aux as WEAux
import ProdAgent.WorkflowEntities.Workflow as WEWorkflow

workflow = sys.argv[1]
workflowSpec = WorkflowSpec()
workflowSpec.load(workflow)

#  //
# // Clean out job cache
#//
config = loadProdAgentConfiguration()
compCfg = config.getConfig("JobCreator")
creatorCache = os.path.expandvars(compCfg['ComponentDir'])

workflowCache = os.path.join(creatorCache, workflowSpec.workflowName())
if os.path.exists(workflowCache):
    os.system("/bin/rm -rf %s" % workflowCache)



Session.set_database(dbConfig)
Session.connect()
Session.start_transaction()

#  //
# // clean out queue
#//
jobQ = JobQueueDB()
jobQ.removeWorkflow(workflowSpec.workflowName())
開發者ID:giffels,項目名稱:PRODAGENT,代碼行數:32,代碼來源:removeWorkflow.py

示例5: __init__

# 需要導入模塊: from ProdCommon.MCPayloads.WorkflowSpec import WorkflowSpec [as 別名]
# 或者: from ProdCommon.MCPayloads.WorkflowSpec.WorkflowSpec import workflowName [as 別名]
class RequestIterator:
    """
    _RequestIterator_

    Working from a Generic Workflow template, generate
    concrete jobs from it, keeping in-memory history

    """
    def __init__(self, workflowSpecFile, workingDir):
        self.workflow = workflowSpecFile
        self.workingDir = workingDir
        self.count = 0
        self.runIncrement = 1
        self.currentJob = None
        self.sitePref = None
        self.pileupDatasets = {}
        self.ownedJobSpecs = {}
        
        #  //
        # // Initially hard coded, should be extracted from Component Config
        #//
        self.eventsPerJob = 10 
        
        self.workflowSpec = WorkflowSpec()
        try:
         self.workflowSpec.load(workflowSpecFile)
        except:
         logging.error("ERROR Loading Workflow: %s " % (workflowSpecFile))
         return

        if self.workflowSpec.parameters.get("RunIncrement", None) != None:
            self.runIncrement = int(
                self.workflowSpec.parameters['RunIncrement']
                )

    
        self.generators = GeneratorMaker()
        self.workflowSpec.payload.operate(self.generators)
        
        
        
        #  //
        # // Cache Area for JobSpecs
        #//
        self.specCache = os.path.join(
            self.workingDir,
            "%s-Cache" %self.workflowSpec.workflowName())
        if not os.path.exists(self.specCache):
            os.makedirs(self.specCache)
        


    def loadPileupDatasets(self):
        """
        _loadPileupDatasets_

        Are we dealing with pileup? If so pull in the file list
        
        """
        puDatasets = self.workflowSpec.pileupDatasets()
        if len(puDatasets) > 0:
            logging.info("Found %s Pileup Datasets for Workflow: %s" % (
                len(puDatasets), self.workflowSpec.workflowName(),
                ))
            self.pileupDatasets = createPileupDatasets(self.workflowSpec)
        return

    def loadPileupSites(self):
        """
        _loadPileupSites_
                                                                                                              
        Are we dealing with pileup? If so pull in the site list
                                                                                                              
        """
        sites = []
        puDatasets = self.workflowSpec.pileupDatasets()
        if len(puDatasets) > 0:
            logging.info("Found %s Pileup Datasets for Workflow: %s" % (
                len(puDatasets), self.workflowSpec.workflowName(),
                ))
            sites = getPileupSites(self.workflowSpec)
        return sites
                                                                                                              


            
    def __call__(self):
        """
        _operator()_

        When called generate a new concrete job payload from the
        generic workflow and return it.

        """
        newJobSpec = self.createJobSpec()
        self.count += self.runIncrement
        return newJobSpec


    def createJobSpec(self):
#.........這裏部分代碼省略.........
開發者ID:giffels,項目名稱:PRODAGENT,代碼行數:103,代碼來源:RequestIterator.py

示例6: __init__

# 需要導入模塊: from ProdCommon.MCPayloads.WorkflowSpec import WorkflowSpec [as 別名]
# 或者: from ProdCommon.MCPayloads.WorkflowSpec.WorkflowSpec import workflowName [as 別名]
class DatasetIterator:
    """
    _DatasetIterator_

    Working from a Generic Workflow template, generate
    concrete jobs from it, keeping in-memory history

    """
    def __init__(self, workflowSpecFile, workingDir):
        self.workflow = workflowSpecFile
        self.workingDir = workingDir
        self.currentJob = None
        self.workflowSpec = WorkflowSpec()
        self.workflowSpec.load(workflowSpecFile)
        self.currentJobDef = None
        self.count = 0
        self.onlyClosedBlocks = False
        if  self.workflowSpec.parameters.has_key("OnlyClosedBlocks"):
            onlyClosed =  str(
                self.workflowSpec.parameters["OnlyClosedBlocks"]).lower()
            if onlyClosed == "true":
                self.onlyClosedBlocks = True
        self.ownedJobSpecs = {}
        self.allowedBlocks = []
        self.allowedSites = []
        self.dbsUrl = getLocalDBSURL()
        self.splitType = \
                self.workflowSpec.parameters.get("SplitType", "file").lower()
        self.splitSize = int(self.workflowSpec.parameters.get("SplitSize", 1))

        self.generators = GeneratorMaker()
        self.generators(self.workflowSpec.payload)

        self.pileupDatasets = {}
        #  //
        # // Does the workflow contain a block restriction??
        #//
        blockRestriction = \
             self.workflowSpec.parameters.get("OnlyBlocks", None)
        if blockRestriction != None:
            #  //
            # // restriction on blocks present, populate allowedBlocks list
            #//
            msg = "Block restriction provided in Workflow Spec:\n"
            msg += "%s\n" % blockRestriction
            blockList = blockRestriction.split(",")
            for block in blockList:
                if len(block.strip() ) > 0:
                    self.allowedBlocks.append(block.strip())

        #  //
        # // Does the workflow contain a site restriction??
        #//
        siteRestriction = \
           self.workflowSpec.parameters.get("OnlySites", None)          
        if siteRestriction != None:
            #  //
            # // restriction on sites present, populate allowedSites list
            #//
            msg = "Site restriction provided in Workflow Spec:\n"
            msg += "%s\n" % siteRestriction
            siteList = siteRestriction.split(",")
            for site in siteList:
                if len(site.strip() ) > 0:
                    self.allowedSites.append(site.strip())

        #  //
        # // Is the DBSURL contact information provided??
        #//

        value = self.workflowSpec.parameters.get("DBSURL", None)
        if value != None:
            self.dbsUrl = value

        if self.dbsUrl == None:
            msg = "Error: No DBSURL available for dataset:\n"
            msg += "Cant get local DBSURL and one not provided with workflow"
            raise RuntimeError, msg
            
        #  //
        # // Cache Area for JobSpecs
        #//
        self.specCache = os.path.join(
            self.workingDir,
            "%s-Cache" %self.workflowSpec.workflowName())
        if not os.path.exists(self.specCache):
            os.makedirs(self.specCache)
        
        
    def __call__(self, jobDef):
        """
        _operator()_

        When called generate a new concrete job payload from the
        generic workflow and return it.
        The JobDef should be a JobDefinition with the input details
        including LFNs and event ranges etc.

        """
        newJobSpec = self.createJobSpec(jobDef)
#.........這裏部分代碼省略.........
開發者ID:giffels,項目名稱:PRODAGENT,代碼行數:103,代碼來源:DatasetIterator.py

示例7: WorkflowSpec

# 需要導入模塊: from ProdCommon.MCPayloads.WorkflowSpec import WorkflowSpec [as 別名]
# 或者: from ProdCommon.MCPayloads.WorkflowSpec.WorkflowSpec import workflowName [as 別名]
    print usage
    sys.exit(1)
if nevts  == None:
    print "--nevts option not provided \n The default of the workflow will be used."


## check workflow existing on disk 
workflow=os.path.expandvars(os.path.expanduser(workflow))
if not os.path.exists(workflow):
    print "Workflow not found: %s" % workflow
    sys.exit(1)

## get the workflow name
workflowSpec = WorkflowSpec()
workflowSpec.load(workflow)
workflowName = workflowSpec.workflowName()
workflowBase=os.path.basename(workflow)

## use MessageService
ms = MessageService()
## register message service instance as "Test"
ms.registerAs("TestSkim")

## Debug level
ms.publish("DatasetInjector:StartDebug","none")
ms.publish("JobCreator:StartDebug","none")
ms.publish("JobSubmitter:StartDebug","none")
ms.publish("DBSInterface:StartDebug","none")
ms.publish("ErrorHandler:StartDebug","none")
ms.publish("TrackingComponent:StartDebug","none")
ms.commit()
開發者ID:giffels,項目名稱:PRODAGENT,代碼行數:33,代碼來源:InjectTestRecoLSF.py

示例8: __call__

# 需要導入模塊: from ProdCommon.MCPayloads.WorkflowSpec import WorkflowSpec [as 別名]
# 或者: from ProdCommon.MCPayloads.WorkflowSpec.WorkflowSpec import workflowName [as 別名]

#.........這裏部分代碼省略.........
                msg = "CMSSW Version found in payload: %s" % cmsswVersion
                logging.info(msg)
            else:
                cmsswVersion = findVersionForDataset(
                    self.dbsUrl,
                    collectPayload['PrimaryDataset'],
                    collectPayload['ProcessedDataset'],
                    collectPayload['DataTier'],
                    collectPayload['RunNumber'])
                msg = "CMSSW Version for dataset/run\n"
                msg += " Dataset %s\n" % collectPayload.datasetPath()
                msg += " CMSSW Version = %s\n " % cmsswVersion
                logging.info(msg)

            workflowSpec = createHarvestingWorkflow(
                collectPayload.datasetPath(),
                site,
                self.args['CmsPath'],
                self.args['ScramArch'],
                cmsswVersion,
                globalTag,
                configFile=self.args['ConfigFile'],
                DQMServer=self.args['DQMServer'],
                proxyLocation=self.args['proxyLocation'],
                DQMCopyToCERN=self.args['DQMCopyToCERN'],
                doStageOut=self.args['DoStageOut'])
            
            workflowSpec.save(workflowFile)
            msg = "Created Harvesting Workflow:\n %s" % workflowFile
            msg += "\nThe following parameters were used:\n"
            msg += "DQMserver     ==> %s\n" % (self.args['DQMServer'])
            msg += "proxyLocation ==> %s\n" % (self.args['proxyLocation'])
            msg += "Stage Out     ==> %s\n" % (self.args['DoStageOut'])
            msg += "DQMCopyToCERN ==> %s\n" % (self.args['DQMCopyToCERN'])
            logging.info(msg)
            self.publishWorkflow(workflowFile, workflowSpec.workflowName())
        else:
            msg = "Loading existing workflow for dataset: %s\n " % (
                collectPayload.datasetPath())
            msg += " => %s\n" % workflowFile
            logging.info(msg)

            workflowSpec = WorkflowSpec()
            workflowSpec.load(workflowFile)

        job = {}
        jobSpec = workflowSpec.createJobSpec()
        jobName = "%s-%s-%s" % (
            workflowSpec.workflowName(),
            collectPayload['RunNumber'],
            time.strftime("%H-%M-%S-%d-%m-%y")
            )

        jobSpec.setJobName(jobName)
        jobSpec.setJobType("Harvesting")

        # Adding specific parameters to the JobSpec
        jobSpec.parameters['RunNumber'] = collectPayload['RunNumber']  # How should we manage the run numbers?
        jobSpec.parameters['Scenario'] = collectPayload['Scenario']
        if collectPayload.get('RefHistKey', None) is not None:
            jobSpec.parameters['RefHistKey'] = collectPayload['RefHistKey']

        jobSpec.addWhitelistSite(site)
        jobSpec.payload.operate(DefaultLFNMaker(jobSpec))
        jobSpec.payload.cfgInterface.inputFiles.extend(
            getLFNForDataset(self.dbsUrl,
                             collectPayload['PrimaryDataset'],
                             collectPayload['ProcessedDataset'],
                             collectPayload['DataTier'],
                             run=collectPayload['RunNumber']))

        specCacheDir =  os.path.join(
            datasetCache, str(int(collectPayload['RunNumber']) // 1000).zfill(4))
        if not os.path.exists(specCacheDir):
            os.makedirs(specCacheDir)
        jobSpecFile = os.path.join(specCacheDir,
                                   "%s-JobSpec.xml" % jobName)

        jobSpec.save(jobSpecFile)

        job["JobSpecId"] = jobName
        job["JobSpecFile"] = jobSpecFile
        job['JobType'] = "Harvesting"
        job["WorkflowSpecId"] = workflowSpec.workflowName(),
        job["WorkflowPriority"] = 10
        job["Sites"] = [site]
        job["Run"] = collectPayload['RunNumber']
        job['WorkflowSpecFile'] = workflowFile

        msg = "Harvesting Job Created for\n"
        msg += " => Run:       %s\n" % collectPayload['RunNumber']
        msg += " => Primary:   %s\n" % collectPayload['PrimaryDataset']
        msg += " => Processed: %s\n" % collectPayload['ProcessedDataset']
        msg += " => Tier:      %s\n" % collectPayload['DataTier']
        msg += " => Workflow:  %s\n" % job['WorkflowSpecId']
        msg += " => Job:       %s\n" % job['JobSpecId']
        msg += " => Site:      %s\n" % job['Sites']
        logging.info(msg)

        return [job]
開發者ID:giffels,項目名稱:PRODAGENT,代碼行數:104,代碼來源:RelValPlugin.py

示例9: range

# 需要導入模塊: from ProdCommon.MCPayloads.WorkflowSpec import WorkflowSpec [as 別名]
# 或者: from ProdCommon.MCPayloads.WorkflowSpec.WorkflowSpec import workflowName [as 別名]
for run in range(firstrun, lastrun+1):

    jobCreator.setRun(run)

    # if this is needed we should create
    # a JobCreator instance per run
    #workflowSpec.setWorkflowRunNumber(run)

    jobList = []
    for lumi in range(1,lumiperrun+1):

        jobCreator.setLumi(lumi)
        jobCreator.setEventsPerJob(eventsperjob)
        jobCreator.setFirstEvent(1+lumi*eventsperjob)

        jobName = "%s-%s-%s" % (workflowSpec.workflowName(),
                                run, lumi)

        jobSpec = workflowSpec.createJobSpec()

        jobSpecDir =  os.path.join("/data/hufnagel/parepack/StreamerMCRunning",
                                   str(run // 1000).zfill(4))
        if not os.path.exists(jobSpecDir):
            os.makedirs(jobSpecDir)

        jobSpecFileName = jobName + "-jobspec.xml"
        jobSpecFile = os.path.join(jobSpecDir, jobSpecFileName) 

        jobSpec.setJobName(jobName)

        # used for thresholds
開發者ID:TonyWildish,項目名稱:CSA06-T0-prototype,代碼行數:33,代碼來源:injectMCStreamerWorkflow.py


注:本文中的ProdCommon.MCPayloads.WorkflowSpec.WorkflowSpec.workflowName方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。