當前位置: 首頁>>代碼示例>>Python>>正文


Python StringVariable.make方法代碼示例

本文整理匯總了Python中Orange.data.StringVariable.make方法的典型用法代碼示例。如果您正苦於以下問題:Python StringVariable.make方法的具體用法?Python StringVariable.make怎麽用?Python StringVariable.make使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在Orange.data.StringVariable的用法示例。


在下文中一共展示了StringVariable.make方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: concatenate_data

# 需要導入模塊: from Orange.data import StringVariable [as 別名]
# 或者: from Orange.data.StringVariable import make [as 別名]
def concatenate_data(tables, filenames, label):
    domain, xs = domain_union_for_spectra(tables)
    ntables = [(table if isinstance(table, Table) else table[2]).transform(domain)
               for table in tables]
    data = type(ntables[0]).concatenate(ntables, axis=0)
    source_var = StringVariable.make("Filename")
    label_var = StringVariable.make("Label")

    # add other variables
    xs_atts = tuple([ContinuousVariable.make("%f" % f) for f in xs])
    domain = Domain(xs_atts + domain.attributes, domain.class_vars,
                    domain.metas + (source_var, label_var))
    data = data.transform(domain)

    # fill in spectral data
    xs_sind = np.argsort(xs)
    xs_sorted = xs[xs_sind]
    pos = 0
    for table in tables:
        t = table if isinstance(table, Table) else table[2]
        if not isinstance(table, Table):
            indices = xs_sind[np.searchsorted(xs_sorted, table[0])]
            data.X[pos:pos+len(t), indices] = table[1]
        pos += len(t)

    data[:, source_var] = np.array(list(
        chain(*(repeat(fn, len(table))
                for fn, table in zip(filenames, ntables)))
    )).reshape(-1, 1)
    data[:, label_var] = np.array(list(
        chain(*(repeat(label, len(table))
                for fn, table in zip(filenames, ntables)))
    )).reshape(-1, 1)
    return data
開發者ID:stuart-cls,項目名稱:orange-infrared,代碼行數:36,代碼來源:owmultifile.py

示例2: test_nyt_corpus_domain_generation

# 需要導入模塊: from Orange.data import StringVariable [as 別名]
# 或者: from Orange.data.StringVariable import make [as 別名]
    def test_nyt_corpus_domain_generation(self):
        corpus = self.nyt.run_query('slovenia')
        meta_vars = [StringVariable.make(field) for field in NYT_TEXT_FIELDS] + \
                    [StringVariable.make('pub_date'), StringVariable.make('country')]

        self.assertEqual(len(meta_vars), len(corpus.domain.metas))
        self.assertEqual(len(corpus.Y), 10)
開發者ID:RachitKansal,項目名稱:orange3-text,代碼行數:9,代碼來源:test_nyt.py

示例3: parse_record_json

# 需要導入模塊: from Orange.data import StringVariable [as 別名]
# 或者: from Orange.data.StringVariable import make [as 別名]
def parse_record_json(record, includes_metadata):
    """
    Parses the JSON representation of the record returned by the New York Times Article API.
    :param record: The JSON representation of the query's results.
    :param includes_metadata: The flags that determine which fields to include.
    :return: A list of articles parsed into documents and a list of the
        corresponding metadata, joined in a tuple.
    """
    text_fields = ["headline", "lead_paragraph", "snippet", "abstract", "keywords"]

    documents = []
    class_values = []
    meta_vars = [StringVariable.make(field) for field, flag in zip(text_fields, includes_metadata) if flag]
    # Also add pub_date and glocation.
    meta_vars += [StringVariable.make("pub_date"), StringVariable.make("country")]
    metadata = np.empty((0, len(meta_vars)), dtype=object)
    for doc in record["response"]["docs"]:
        string_document = ""
        metas_row = []
        for field, flag in zip(text_fields, includes_metadata):
            if flag and field in doc:
                field_value = ""
                if isinstance(doc[field], dict):
                    field_value = " ".join([val for val in doc[field].values() if val])
                elif isinstance(doc[field], list):
                    field_value = " ".join([kw["value"] for kw in doc[field] if kw])
                else:
                    if doc[field]:
                        field_value = doc[field]
                string_document += field_value
                metas_row.append(field_value)
        # Add the pub_date.
        field_value = ""
        if "pub_date" in doc and doc["pub_date"]:
            field_value = doc["pub_date"]
        metas_row.append(field_value)
        # Add the glocation.
        metas_row.append(",".join([kw["value"] for kw in doc["keywords"] if kw["name"] == "glocations"]))

        # Add the section_name.
        class_val = ""
        if "section_name" in doc and doc["section_name"]:
            class_val = doc["section_name"]

        documents.append(string_document)
        class_values.append(class_val)
        metadata = np.vstack((metadata, np.array(metas_row)))
    return documents, metadata, meta_vars, class_values
開發者ID:kernc,項目名稱:orange3-text,代碼行數:50,代碼來源:nyt.py

示例4: generate_corpus

# 需要導入模塊: from Orange.data import StringVariable [as 別名]
# 或者: from Orange.data.StringVariable import make [as 別名]
 def generate_corpus(self, url_list):
     """
     generate new corpus with values requested by user
     :param url_list:
     :return: corpus
     """
     new_table=None
     text_includes_params = [self.includes_article, self.includes_author, self.includes_date,
                              self.includes_title, self.includes_web_url]
     if True not in text_includes_params:
         self.warning(1, "You must select at least one text field.")
         return
     required_text_fields = [incl_field for yes, incl_field in zip(text_includes_params, ARTICLE_TEXT_FIELDS) if yes]
     meta_vars = [StringVariable.make(field) for field in required_text_fields]
     metadata=[]
     for url in url_list:
         info, is_cached =_get_info(url)
         final_fields = [incl_field for yes, incl_field in zip(text_includes_params, info) if yes]
         metadata.append(final_fields)
     metadata = np.array(metadata, dtype=object)
     metas=metadata
     domain = Domain([], class_vars=None, metas=(meta_vars))
     new_table = Corpus(None, None, metadata, domain, meta_vars)
     self.output_corpus=new_table
     self.send("Corpus",self.output_corpus)
開發者ID:cheral,項目名稱:orange3-text,代碼行數:27,代碼來源:owscraper.py

示例5: _corpus_from_records

# 需要導入模塊: from Orange.data import StringVariable [as 別名]
# 或者: from Orange.data.StringVariable import make [as 別名]
def _corpus_from_records(records, includes_metadata):
    """Receives PubMed records and transforms them into a corpus.

    Args:
        records (list): A list of PubMed entries.
        includes_metadata (list): A list of text fields to include.

    Returns:
        corpus: The output Corpus.
    """
    meta_values, class_values = _records_to_corpus_entries(
            records,
            includes_metadata=includes_metadata
    )
    meta_vars = []
    for field_name, _ in includes_metadata:
        if field_name == 'pub_date':
            meta_vars.append(TimeVariable(field_name))
        else:
            meta_vars.append(StringVariable.make(field_name))

    class_vars = [
        DiscreteVariable('section_name', values=list(set(class_values)))
    ]
    domain = Domain([], class_vars=class_vars, metas=meta_vars)

    Y = np.array([class_vars[0].to_val(cv) for cv in class_values])[:, None]

    return Corpus(domain=domain, Y=Y, metas=meta_values)
開發者ID:biolab,項目名稱:orange3-text,代碼行數:31,代碼來源:pubmed.py

示例6: _create_corpus

# 需要導入模塊: from Orange.data import StringVariable [as 別名]
# 或者: from Orange.data.StringVariable import make [as 別名]
    def _create_corpus(self):
        corpus = None
        names = ["name", "path", "content"]
        data = []
        category_data = []
        text_categories = list(set(t.category for t in self._text_data))
        values = list(set(text_categories))
        category_var = DiscreteVariable.make("category", values=values)
        for textdata in self._text_data:
            data.append(
                [textdata.name,
                 textdata.path,
                 textdata.content]
            )
            category_data.append(category_var.to_val(textdata.category))
        if len(text_categories) > 1:
            category_data = np.array(category_data)
        else:
            category_var = []
            category_data = np.empty((len(data), 0))
        domain = Domain(
            [], category_var, [StringVariable.make(name) for name in names]
        )
        domain["name"].attributes["title"] = True
        data = np.array(data, dtype=object)
        if len(data):
            corpus = Corpus(domain,
                            Y=category_data,
                            metas=data,
                            text_features=[domain.metas[2]])

        return corpus
開發者ID:s-alexey,項目名稱:orange3-text,代碼行數:34,代碼來源:import_documents.py

示例7: _generate_corpus

# 需要導入模塊: from Orange.data import StringVariable [as 別名]
# 或者: from Orange.data.StringVariable import make [as 別名]
def _generate_corpus(records, required_text_fields):
    """
    Generates a corpus from the input NYT records.
    :param records: The input NYT records.
    :type records: list
    :param required_text_fields: A list of the available NYT text fields.
    :type required_text_fields: list
    :return: :class: `orangecontrib.text.corpus.Corpus`
    """
    metas, class_values = _parse_record_json(records, required_text_fields)
    documents = []
    for doc in metas:
        documents.append(" ".join([d for d in doc if d is not None]).strip())

    # Create domain.
    meta_vars = [StringVariable.make(field) for field in required_text_fields]
    meta_vars += [StringVariable.make("pub_date"), StringVariable.make("country")]
    class_vars = [DiscreteVariable("section_name", values=list(set(class_values)))]
    domain = Domain([], class_vars=class_vars, metas=meta_vars)

    Y = np.array([class_vars[0].to_val(cv) for cv in class_values])[:, None]

    return Corpus(documents, None, Y, metas, domain)
開發者ID:pombredanne,項目名稱:orange3-text,代碼行數:25,代碼來源:nyt.py

示例8: test_domaineditor_makes_variables

# 需要導入模塊: from Orange.data import StringVariable [as 別名]
# 或者: from Orange.data.StringVariable import make [as 別名]
    def test_domaineditor_makes_variables(self):
        # Variables created with domain editor should be interchangeable
        # with variables read from file.

        dat = """V0\tV1\nc\td\n\n1.0\t2"""
        v0 = StringVariable.make("V0")
        v1 = ContinuousVariable.make("V1")

        with named_file(dat, suffix=".tab") as filename:
            self.open_dataset(filename)

            model = self.widget.domain_editor.model()
            model.setData(model.createIndex(0, 1), "text", Qt.EditRole)
            model.setData(model.createIndex(1, 1), "numeric", Qt.EditRole)
            self.widget.apply_button.click()

            data = self.get_output(self.widget.Outputs.data)
            self.assertEqual(data.domain["V0"], v0)
            self.assertEqual(data.domain["V1"], v1)
開發者ID:lanzagar,項目名稱:orange3,代碼行數:21,代碼來源:test_owfile.py

示例9: transpose_table

# 需要導入模塊: from Orange.data import StringVariable [as 別名]
# 或者: from Orange.data.StringVariable import make [as 別名]
def transpose_table(table):
    """
    Transpose the rows and columns of the table.

    Args:
        table: Data in :obj:`Orange.data.Table`

    Returns:
         Transposed :obj:`Orange.data.Table`. (Genes as columns)
    """
    attrs = table.domain.attributes
    attr = [ContinuousVariable.make(ex['Gene'].value) for ex in table]
    #  Set metas
    new_metas = [StringVariable.make(name) if name is not 'Time' else TimeVariable.make(name)
                 for name in sorted(table.domain.variables[0].attributes.keys())]
    domain = Domain(attr, metas=new_metas)
    meta_values = [[exp.attributes[var.name] for var in domain.metas] for exp in attrs]

    return Table(domain, table.X.transpose(), metas=meta_values)
開發者ID:JakaKokosar,項目名稱:orange-bio,代碼行數:21,代碼來源:tools.py

示例10: _guess_variable

# 需要導入模塊: from Orange.data import StringVariable [as 別名]
# 或者: from Orange.data.StringVariable import make [as 別名]
    def _guess_variable(self, field_name, field_metadata, inspect_table):
        type_code = field_metadata[0]

        FLOATISH_TYPES = (700, 701, 1700)  # real, float8, numeric
        INT_TYPES = (20, 21, 23)  # bigint, int, smallint
        CHAR_TYPES = (25, 1042, 1043,)  # text, char, varchar
        BOOLEAN_TYPES = (16,)  # bool
        DATE_TYPES = (1082, 1114, 1184, )  # date, timestamp, timestamptz
        # time, timestamp, timestamptz, timetz
        TIME_TYPES = (1083, 1114, 1184, 1266,)

        if type_code in FLOATISH_TYPES:
            return ContinuousVariable.make(field_name)

        if type_code in TIME_TYPES + DATE_TYPES:
            tv = TimeVariable.make(field_name)
            tv.have_date |= type_code in DATE_TYPES
            tv.have_time |= type_code in TIME_TYPES
            return tv

        if type_code in INT_TYPES:  # bigint, int, smallint
            if inspect_table:
                values = self.get_distinct_values(field_name, inspect_table)
                if values:
                    return DiscreteVariable.make(field_name, values)
            return ContinuousVariable.make(field_name)

        if type_code in BOOLEAN_TYPES:
            return DiscreteVariable.make(field_name, ['false', 'true'])

        if type_code in CHAR_TYPES:
            if inspect_table:
                values = self.get_distinct_values(field_name, inspect_table)
                # remove trailing spaces
                values = [v.rstrip() for v in values]
                if values:
                    return DiscreteVariable.make(field_name, values)

        return StringVariable.make(field_name)
開發者ID:thocevar,項目名稱:orange3,代碼行數:41,代碼來源:postgres.py

示例11: etc_to_table

# 需要導入模塊: from Orange.data import StringVariable [as 別名]
# 或者: from Orange.data.StringVariable import make [as 別名]
    def etc_to_table(self, etc_json, time_var=False, callback=lambda: None):
        """ Converts data from Json to :obj:`Orange.data.table`

        Args:
            etc_json (dict): Data in json like format
            time_var (bool): Create column of time points. Default is set to False.
        Returns:
            :obj:`Orange.data.Table`
        """
        cbc = CallBack(2, callback, callbacks=30)

        variables = []
        time_point = 1
        for time in etc_json['etc']['timePoints']:
            var = ContinuousVariable('TP ' + str(time_point))
            var.attributes['Time'] = str(time)
            variables.append(var)
            time_point += 1

        meta_attr = StringVariable.make('Gene')
        domain = Domain(variables, metas=[meta_attr])
        cbc()

        table = []
        for row in etc_json['etc']['genes']:
            gene_expression = [exp for exp in etc_json['etc']['genes'][row]]
            gene_expression.append(row)
            table.append(gene_expression)

        orange_table = Table(domain, table)

        if time_var:
            orange_table = transpose_table(orange_table)
            cbc()

        cbc.end()
        return orange_table
開發者ID:JakaKokosar,項目名稱:orange-bio,代碼行數:39,代碼來源:genapi.py

示例12: _corpus_from_records

# 需要導入模塊: from Orange.data import StringVariable [as 別名]
# 或者: from Orange.data.StringVariable import make [as 別名]
def _corpus_from_records(records, includes_metadata):
    """Receives PubMed records and transforms them into a corpus.

    Args:
        records (list): A list of PubMed entries.
        includes_metadata (list): A list of text fields to include.

    Returns:
        corpus: The output Corpus.
    """
    meta_vars = []
    time_var = None
    for field_name, _ in includes_metadata:
        if field_name == PUBMED_FIELD_DATE:
            time_var = TimeVariable(field_name)
            meta_vars.append(time_var)
        else:
            meta_vars.append(StringVariable.make(field_name))
            if field_name == PUBMED_FIELD_TITLE:
                meta_vars[-1].attributes["title"] = True

    meta_values, class_values = _records_to_corpus_entries(
        records,
        includes_metadata=includes_metadata,
        time_var=time_var,
    )

    class_vars = [
        DiscreteVariable('section',
                         values=list(map(str, set(filter(None, class_values)))))
    ]
    domain = Domain([], class_vars=class_vars, metas=meta_vars)

    Y = np.array([class_vars[0].to_val(cv) for cv in class_values])[:, None]

    return Corpus(domain=domain, Y=Y, metas=meta_values)
開發者ID:s-alexey,項目名稱:orange3-text,代碼行數:38,代碼來源:pubmed.py

示例13: read

# 需要導入模塊: from Orange.data import StringVariable [as 別名]
# 或者: from Orange.data.StringVariable import make [as 別名]
    def read(self):
        try:
            import opusFC
        except ImportError:
            raise RuntimeError(self._OPUS_WARNING)

        if self.sheet:
            db = self.sheet
        else:
            db = self.sheets[0]

        db = tuple(db.split(" "))
        dim = db[1]

        try:
            data = opusFC.getOpusData(self.filename, db)
        except Exception:
            raise IOError("Couldn't load spectrum from " + self.filename)

        attrs, clses, metas = [], [], []

        attrs = [ContinuousVariable.make(repr(data.x[i]))
                 for i in range(data.x.shape[0])]

        y_data = None
        meta_data = None

        if type(data) == opusFC.MultiRegionDataReturn:
            y_data = []
            meta_data = []
            metas.extend([ContinuousVariable.make('map_x'),
                          ContinuousVariable.make('map_y'),
                          StringVariable.make('map_region'),
                          TimeVariable.make('start_time')])
            for region in data.regions:
                y_data.append(region.spectra)
                mapX = region.mapX
                mapY = region.mapY
                map_region = np.full_like(mapX, region.title, dtype=object)
                start_time = region.start_time
                meta_region = np.column_stack((mapX, mapY,
                                               map_region, start_time))
                meta_data.append(meta_region.astype(object))
            y_data = np.vstack(y_data)
            meta_data = np.vstack(meta_data)

        elif type(data) == opusFC.MultiRegionTRCDataReturn:
            y_data = []
            meta_data = []
            metas.extend([ContinuousVariable.make('map_x'),
                          ContinuousVariable.make('map_y'),
                          StringVariable.make('map_region')])
            attrs = [ContinuousVariable.make(repr(data.labels[i]))
                     for i in range(len(data.labels))]
            for region in data.regions:
                y_data.append(region.spectra)
                mapX = region.mapX
                mapY = region.mapY
                map_region = np.full_like(mapX, region.title, dtype=object)
                meta_region = np.column_stack((mapX, mapY, map_region))
                meta_data.append(meta_region.astype(object))
            y_data = np.vstack(y_data)
            meta_data = np.vstack(meta_data)

        elif type(data) == opusFC.ImageDataReturn:
            metas.extend([ContinuousVariable.make('map_x'),
                          ContinuousVariable.make('map_y')])

            data_3D = data.spectra

            for i in np.ndindex(data_3D.shape[:1]):
                map_y = np.full_like(data.mapX, data.mapY[i])
                coord = np.column_stack((data.mapX, map_y))
                if y_data is None:
                    y_data = data_3D[i]
                    meta_data = coord.astype(object)
                else:
                    y_data = np.vstack((y_data, data_3D[i]))
                    meta_data = np.vstack((meta_data, coord))

        elif type(data) == opusFC.ImageTRCDataReturn:
            metas.extend([ContinuousVariable.make('map_x'),
                          ContinuousVariable.make('map_y')])

            attrs = [ContinuousVariable.make(repr(data.labels[i]))
                     for i in range(len(data.labels))]
            data_3D = data.traces

            for i in np.ndindex(data_3D.shape[:1]):
                map_y = np.full_like(data.mapX, data.mapY[i])
                coord = np.column_stack((data.mapX, map_y))
                if y_data is None:
                    y_data = data_3D[i]
                    meta_data = coord.astype(object)
                else:
                    y_data = np.vstack((y_data, data_3D[i]))
                    meta_data = np.vstack((meta_data, coord))

        elif type(data) == opusFC.TimeResolvedTRCDataReturn:
            y_data = data.traces
#.........這裏部分代碼省略.........
開發者ID:stuart-cls,項目名稱:orange-infrared,代碼行數:103,代碼來源:data.py

示例14: read

# 需要導入模塊: from Orange.data import StringVariable [as 別名]
# 或者: from Orange.data.StringVariable import make [as 別名]
    def read(self):
        who = matlab.whosmat(self.filename)
        if not who:
            raise IOError("Couldn't load matlab file " + self.filename)
        else:
            ml = matlab.loadmat(self.filename, chars_as_strings=True)

            ml = {a: b for a, b in ml.items() if isinstance(b, np.ndarray)}

            # X is the biggest numeric array
            numarrays = []
            for name, con in ml.items():
                 if issubclass(con.dtype.type, numbers.Number):
                    numarrays.append((name, reduce(lambda x, y: x*y, con.shape, 1)))
            X = None
            if numarrays:
                nameX = max(numarrays, key=lambda x: x[1])[0]
                X = ml.pop(nameX)

            # find an array with compatible shapes
            attributes = []
            if X is not None:
                nameattributes = None
                for name, con in ml.items():
                    if con.shape in [(X.shape[1],), (1, X.shape[1])]:
                        nameattributes = name
                        break
                attributenames = ml.pop(nameattributes).ravel() if nameattributes else range(X.shape[1])
                attributenames = [str(a).strip() for a in attributenames]  # strip because of numpy char array
                attributes = [ContinuousVariable.make(a) for a in attributenames]

            metas = []
            metaattributes = []

            sizemetas = None
            if X is None:
                counts = defaultdict(list)
                for name, con in ml.items():
                    counts[len(con)].append(name)
                if counts:
                    sizemetas = max(counts.keys(), key=lambda x: len(counts[x]))
            else:
                sizemetas = len(X)
            if sizemetas:
                for name, con in ml.items():
                    if len(con) == sizemetas:
                        metas.append(name)

            metadata = []
            for m in sorted(metas):
                f = ml[m]
                metaattributes.append(StringVariable.make(m))
                f.resize(sizemetas, 1)
                metadata.append(f)

            metadata = np.hstack(tuple(metadata))

            domain = Domain(attributes, metas=metaattributes)
            if X is None:
                X = np.zeros((sizemetas, 0))
            return Orange.data.Table.from_numpy(domain, X, Y=None, metas=metadata)
開發者ID:borondics,項目名稱:orange-infrared,代碼行數:63,代碼來源:data.py


注:本文中的Orange.data.StringVariable.make方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。