本文整理匯總了Python中ModelingMachine.engine.partition.Partition.set方法的典型用法代碼示例。如果您正苦於以下問題:Python Partition.set方法的具體用法?Python Partition.set怎麽用?Python Partition.set使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類ModelingMachine.engine.partition.Partition
的用法示例。
在下文中一共展示了Partition.set方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _create_test_data
# 需要導入模塊: from ModelingMachine.engine.partition import Partition [as 別名]
# 或者: from ModelingMachine.engine.partition.Partition import set [as 別名]
def _create_test_data(self):
X, y = datasets.make_friedman1(n_samples=20, random_state=13)
X = pd.DataFrame(X)
Y = Response.from_array(y / y.max())
Z = Partition(size=X.shape[0], folds=5, reps=1, total_size=X.shape[0])
Z.set(max_reps=1, max_folds=0)
return Container(X), Y, Z
示例2: test_freq_sev_task_predict
# 需要導入模塊: from ModelingMachine.engine.partition import Partition [as 別名]
# 或者: from ModelingMachine.engine.partition.Partition import set [as 別名]
def test_freq_sev_task_predict(self):
"""
Test task predict function
"""
x = np.random.randint(1, 8, (3000, 1))
ydata = Response.from_array(x[:, 0])
xcont = Container()
xcont.add(x)
Z = Partition(3000, folds=5, reps=5, total_size=3000)
Z.set(max_folds=0, max_reps=1)
est = CALIB()
est = est.fit(xcont, ydata, Z)
x2 = np.random.random((300, 1))
x2cont = Container()
x2cont.add(x2)
Z = Partition(300, folds=5, reps=5, total_size=300)
Z.set(max_folds=0, max_reps=1)
ydata = Response.from_array(x2[:, 0])
out = est.predict(x2cont, ydata, Z)
self.assertIsInstance(out, Container)
for p in out:
self.assertEqual(out(**p).shape[1], 1)
self.assertEqual(out(**p).shape[0], x2.shape[0])
desired = x2
np.testing.assert_allclose(desired.ravel(), out(**p).ravel())
示例3: create_data
# 需要導入模塊: from ModelingMachine.engine.partition import Partition [as 別名]
# 或者: from ModelingMachine.engine.partition.Partition import set [as 別名]
def create_data(self):
X = copy.deepcopy(self.ds)
Y = Response.from_array(X.pop('Claim_Amount').values)
X = X.take(range(21,29),axis=1)
Z = Partition(size=X.shape[0],total_size=X.shape[0]+20,folds=5,reps=5)
Z.set(max_reps=1,max_folds=0)
return Container(X),Y,Z
示例4: x_test_as_factor
# 需要導入模塊: from ModelingMachine.engine.partition import Partition [as 別名]
# 或者: from ModelingMachine.engine.partition.Partition import set [as 別名]
def x_test_as_factor(self):
"""Tests if factors are recorded properly.
We will fit RGBC with one cat variable with 3 levels a and b are negative
c is positive. We then predict on a container where only two levels a and c
are present -- if c will be predicted as negative we don't store factors
properly.
"""
X_train = pd.DataFrame({'cat': ['a', 'a', 'b', 'c', 'c', 'a', 'a', 'b']})
Y_train = np.array([0, 0, 0, 1, 1, 0, 0, 0])
Z_train = Partition(size=X_train.shape[0], folds=5, reps=5, total_size=X_train.shape[0])
Z_train.set(max_reps=1, max_folds=0)
# create a container -- we have 3 levels in 'cat'
C_train = Container()
C_train.add(X_train.values, colnames=['cat'], coltypes=[3])
task = RGBC('n=10;md=2;s=1.0')
task.fit(C_train, Y_train, Z_train)
# now omit level b -- this should map level c to 2 which is the
# same index that b had before
X_test = pd.DataFrame({'cat': ['a', 'a', 'c', 'c', 'a', 'a', 'c']})
Y_test = np.array([0, 0, 1, 1, 0, 0, 1])
Z_test = Partition(size=X_test.shape[0], folds=5, reps=5, total_size=X_test.shape[0])
Z_test.set(max_reps=1, max_folds=0)
C_test = Container()
C_test.add(X_test.values, colnames=['cat'], coltypes=[2])
# test if predictions match
pred = task.predict(C_test, Y_test, Z_test)
pred = pred(**next(iter(Z_test))).ravel()
np.testing.assert_array_equal(Y_test, (pred >= 0.5).astype(np.int))
示例5: test_ngrams_words_calculates_ace
# 需要導入模塊: from ModelingMachine.engine.partition import Partition [as 別名]
# 或者: from ModelingMachine.engine.partition.Partition import set [as 別名]
def test_ngrams_words_calculates_ace(self):
xdata = np.repeat(np.array(['dog cat dog cat', 'cat dog dog cat', 'cat dog cat dog', 'dog dog cat cat']), 25).reshape(-1, 1)
perm = np.random.permutation(xdata.shape[0])
X = Container()
X.add(xdata[perm, :])
y = np.repeat(np.array([1, 1, 0, 0]), 25)[perm]
Z = Partition(size=xdata.shape[0], reps=5)
Z.set(max_folds=0, max_reps=2)
taskbow = AutoTunedWordGramClassifier('num=1;ma=LogLoss')
taskbow.fit(X, y, Z)
predictions = taskbow.predict(X, y, Z)
report = taskbow.report()
for p in Z:
key = (p['r'], p['k'])
self.assertTrue('var_imp_info' in report[key])
self.assertTrue(report[key]['var_imp_info'] < 0.1)
taskw = AutoTunedWordGramClassifier('num=4;ma=LogLoss')
taskw.fit(X, y, Z)
transform = taskw.transform(X, y, Z)
predictions = taskw.predict(X, y, Z)
report = taskw.report()
for p in Z:
key = (p['r'], p['k'])
print key
print report[key]['var_imp_info']
print predictions(**p).ravel()
print predictions(**p) == y
self.assertTrue('var_imp_info' in report[key])
self.assertGreater(report[key]['var_imp_info'], 0.9)
示例6: test_clf_early_stop_gridsearch_weights
# 需要導入模塊: from ModelingMachine.engine.partition import Partition [as 別名]
# 或者: from ModelingMachine.engine.partition.Partition import set [as 別名]
def test_clf_early_stop_gridsearch_weights(self, mocklogloss):
"""Test clf passes weights to the loss function if early-stopping is in effect when doing gridsearch. """
def weight_loss(actual, pred, weights):
print "Test"
if np.all(weights[actual == 1] == 10.) and \
np.all(weights[actual == -1] == 1.):
raise ValueError("Weights passed successfully")
else:
assert(False)
return np.sum(pred) - 50.0
mocklogloss.method = weight_loss
x, Y = make_hastie_10_2(n_samples=300, random_state=41)
X = Container()
X.add(x)
Z = Partition(X.shape[0], max_reps=2, max_folds=0)
Z.set(max_reps=1, max_folds=1)
wt = {'weight': pd.Series(2.0 + 9.0 * (Y == 1).astype(float))}
# Add weights to container
X.initialize(wt)
task = ESGBC('s=1;n=10;md=[2];ls=1;lr=[0.1, 0.000001];t_m=Weighted LogLoss')
task.fit(X, Y, Z)
# Assert the patched loss function was passed the weights
self.assertTrue(mocklogloss.called)
# The third argument is weight, we should be passed two values
passed_weights = mocklogloss.call_args[0][2]
passed_actuals = mocklogloss.call_args[0][0]
self.assertEqual(len(np.unique(passed_weights)), 2)
print passed_weights
self.assertTrue(np.all(passed_weights[passed_actuals == -1] == 2))
self.assertTrue(np.all(passed_weights[passed_actuals == 1] == 11))
示例7: create_bin_large_data
# 需要導入模塊: from ModelingMachine.engine.partition import Partition [as 別名]
# 或者: from ModelingMachine.engine.partition.Partition import set [as 別名]
def create_bin_large_data(self,reps=1):
X = copy.deepcopy(self.ds3)
Y = X.pop('SeriousDlqin2yrs').values
Y = Response.from_array(Y)
Z = Partition(size=X.shape[0],folds=5,reps=reps,total_size=X.shape[0])
Z.set(max_reps=reps,max_folds=0)
X = Container(dataframe=X)
return X,Y,Z
示例8: create_reg_count_syn_data
# 需要導入模塊: from ModelingMachine.engine.partition import Partition [as 別名]
# 或者: from ModelingMachine.engine.partition.Partition import set [as 別名]
def create_reg_count_syn_data(self, reps=1):
X, y = syn_counts(n_samples=500, random_state=13)
X = pd.DataFrame(data=X, columns=map(unicode, range(X.shape[1])))
Y = Response.from_array(y)
Z = Partition(size=X.shape[0], folds=5, reps=reps,total_size=X.shape[0])
Z.set(max_reps=reps,max_folds=0)
X = Container(dataframe=X)
return X, Y, Z
示例9: test_max_reps0
# 需要導入模塊: from ModelingMachine.engine.partition import Partition [as 別名]
# 或者: from ModelingMachine.engine.partition.Partition import set [as 別名]
def test_max_reps0(self):
part = Partition(size=100,folds=5,reps=5,total_size=120)
part.set( max_reps=0)
answer = """...++....+.....+........+.....+++............+.+.+..+..+.+..+....+..........+...+....+...+..........
++....+................+..+..+....+..+..++.+......+.....+....++...................++.......++..+....
..+........+..+.+....+......+......+......+...+............+...+..+......+....++.+.....+..+.....+.+.
.....+.+..+.++....+++.+..+.......+..+.+.........+.....+...+...............+...........+.+....+......
........+........+.........+...........+....+......+.+..........+..++++++..+.+......+.........+..+.+
"""
self.assertEqual(plot_partition(part,100),answer)
示例10: create_bin_data
# 需要導入模塊: from ModelingMachine.engine.partition import Partition [as 別名]
# 或者: from ModelingMachine.engine.partition.Partition import set [as 別名]
def create_bin_data(self,reps=1, rows=None):
X = copy.deepcopy(self.ds)
if rows is not None and rows < X.shape[0]:
X = X[:rows]
Y = X.pop('SeriousDlqin2yrs').values
Y = Response.from_array(Y)
Z = Partition(size=X.shape[0],folds=5,reps=reps,total_size=X.shape[0])
Z.set(max_reps=reps,max_folds=0)
X = Container(dataframe=X)
return X,Y,Z
示例11: generate_data
# 需要導入模塊: from ModelingMachine.engine.partition import Partition [as 別名]
# 或者: from ModelingMachine.engine.partition.Partition import set [as 別名]
def generate_data(self,nrows=5000,ncols=4,seed=56):
colnames = [str(i) for i in xrange(ncols)]
np.random.seed(seed)
x = np.random.randn(nrows, ncols)
X = Container()
X.add(x, colnames=colnames)
Y=x[:,0]+x[:,1]**2+x[:,2]*x[:,1]
Z = Partition(size=nrows,folds=1,reps=1,total_size=nrows)
Z.set(max_reps=1,max_folds=0)
return X,Y,Z
示例12: test_no_test_no_gcv_no_reps_no_folds
# 需要導入模塊: from ModelingMachine.engine.partition import Partition [as 別名]
# 或者: from ModelingMachine.engine.partition.Partition import set [as 別名]
def test_no_test_no_gcv_no_reps_no_folds(self):
part = Partition(size=100,folds=5,reps=5,total_size=120)
part.set( max_reps=0)
part.set( no_test=True)
part.set( no_gcv=True )
part.set( max_folds=1, max_reps=1 )
part.set( no_test=True, no_gcv=True )
answer = "....................................................................................................\n"
part.set( no_test=True, no_gcv=True , max_reps=0, max_folds=0)
self.assertEqual(plot_partition(part,100),answer)
示例13: test_p100f1r1t3
# 需要導入模塊: from ModelingMachine.engine.partition import Partition [as 別名]
# 或者: from ModelingMachine.engine.partition.Partition import set [as 別名]
def test_p100f1r1t3(self):
part = Partition(100, folds=1, reps=1, testfrac=3,total_size=120)
self.assertEqual(len(part),1)
for i in part:
self.assertTupleEqual((len(part.T(**i)),len(part.V(**i)),len(part.S(**i))),(0,66,34))
answer = "++++||++|+++|++|+||+++|+||||++|+|+|||+|+++|++|++++++|+++++++++||+++|+++++++|++|+++|+|++|++|||+||++++\n"
self.assertEqual(plot_partition(part,100),answer)
part.set(samplepct=50)
for i in part:
self.assertTupleEqual((len(part.T(**i)),len(part.V(**i)),len(part.S(**i))),(0, 40, 20))
answer = "+ ++ + | + ++|+||++ | ||| |||+ + |++|++++ +|+++++++++ | + + +++ + ++ +| +| || | ++\n"
self.assertEqual(plot_partition(part,100),answer)
示例14: generate_data
# 需要導入模塊: from ModelingMachine.engine.partition import Partition [as 別名]
# 或者: from ModelingMachine.engine.partition.Partition import set [as 別名]
def generate_data(self, nrows=5000, ncols=4, seed=56):
colnames = ['X'+str(i) for i in xrange(ncols)]
np.random.seed(seed)
x = abs(np.random.randn(nrows, ncols))
x[:, 1] = x[:, 0]*1.5 + x[:, 1]
X = Container()
X.initialize({'weight': pd.Series(np.ones(nrows))})
X.add(x, colnames=colnames)
Z = Partition(size=nrows, folds=1, reps=1, total_size=nrows)
Z.set(max_reps=1, max_folds=0)
Y = 3 * (x[:, 1] - x[:, 0]) + 0.2 * x[:, 3]
return X, Y, Z
示例15: test_no_gcv
# 需要導入模塊: from ModelingMachine.engine.partition import Partition [as 別名]
# 或者: from ModelingMachine.engine.partition.Partition import set [as 別名]
def test_no_gcv(self):
part = Partition(size=100,folds=5,reps=5,total_size=120)
part.set( max_reps=0)
part.set( no_test=True)
part.set( no_gcv=True )
answer = """|.|.|...|.|.|.........|......|....||....|...|.......|.||...|....|......|.......||...................
...|..........||..||......|.|..|.....|...........|.|.|.......|.|..||..............|...|......||.....
.|...........|.......|........|.......|..|......|.......||..|....|..||...........|..|..||.||.....|..
.....||....|........|...........||..|.....||.|||..|...........|.......|....|.|.......|..........|..|
.......|.|......||.....|||.|...........|..................|.............|||.|.|....|.....|..|..|..|.
"""
self.assertEqual(plot_partition(part,100),answer)