當前位置: 首頁>>代碼示例>>Python>>正文


Python GPopulation.GPopulation類代碼示例

本文整理匯總了Python中GPopulation.GPopulation的典型用法代碼示例。如果您正苦於以下問題:Python GPopulation類的具體用法?Python GPopulation怎麽用?Python GPopulation使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。


在下文中一共展示了GPopulation類的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

   def __init__(self, genome, seed=None, interactiveMode=True):
      """ Initializator of GSimpleGA """
      if seed: random.seed(seed)

      if type(interactiveMode) != BooleanType:
         Util.raiseException("Interactive Mode option must be True or False", TypeError)
      
      if not isinstance(genome, GenomeBase):
         Util.raiseException("The genome must be a GenomeBase subclass", TypeError)

      self.internalPop  = GPopulation(genome)
      self.nGenerations = Consts.CDefGAGenerations
      self.pMutation    = Consts.CDefGAMutationRate
      self.pCrossover   = Consts.CDefGACrossoverRate
      self.nElitismReplacement = Consts.CDefGAElitismReplacement
      self.setPopulationSize(Consts.CDefGAPopulationSize)
      self.minimax      = Consts.minimaxType["maximize"]
      self.elitism      = True

      # Adapters
      self.dbAdapter        = None
      self.migrationAdapter = None
      
      self.time_init       = None
      self.interactiveMode = interactiveMode
      self.interactiveGen  = -1
      self.GPMode = False

      self.selector            = FunctionSlot("Selector")
      self.stepCallback        = FunctionSlot("Generation Step Callback")
      self.terminationCriteria = FunctionSlot("Termination Criteria")
      self.selector.set(Consts.CDefGASelector)
      self.allSlots            = [ self.selector, self.stepCallback, self.terminationCriteria ]

      self.internalParams = {}
      ####
     
      #####
      self.currentGeneration = 0

      # GP Testing
      for classes in Consts.CDefGPGenomes:
         if  isinstance(self.internalPop.oneSelfGenome, classes):
            self.setGPMode(True)
            break
      
      logging.debug("A GA Engine was created, nGenerations=%d", self.nGenerations)
開發者ID:lin-dodo,項目名稱:pyevolve,代碼行數:47,代碼來源:GSimpleGA.py

示例2: step

   def step(self):
      """ Just do one step in evolution, one generation """
      genomeMom = None
      genomeDad = None

      newPop = GPopulation(self.internalPop)
      logging.debug("Population was cloned.")

      size_iterate = len(self.internalPop)

      # Odd population size
      if size_iterate % 2 != 0: size_iterate -= 1

      crossover_empty = self.select(popID=self.currentGeneration).crossover.isEmpty()

      for i in xrange(0, size_iterate, 2):
         genomeMom = self.select(popID=self.currentGeneration)
         genomeDad = self.select(popID=self.currentGeneration)

         if not crossover_empty and self.pCrossover >= 1.0:
            for it in genomeMom.crossover.applyFunctions(mom=genomeMom, dad=genomeDad, count=2):
               (sister, brother) = it
         else:
            if not crossover_empty and Util.randomFlipCoin(self.pCrossover):
               for it in genomeMom.crossover.applyFunctions(mom=genomeMom, dad=genomeDad, count=2):
                  (sister, brother) = it
            else:
               sister = genomeMom.clone()
               brother = genomeDad.clone()

         sister.mutate(pmut=self.pMutation, ga_engine=self)
         brother.mutate(pmut=self.pMutation, ga_engine=self)

         newPop.internalPop.append(sister)
         newPop.internalPop.append(brother)

      if len(self.internalPop) % 2 != 0:
         genomeMom = self.select(popID=self.currentGeneration)
         genomeDad = self.select(popID=self.currentGeneration)

         if Util.randomFlipCoin(self.pCrossover):
            for it in genomeMom.crossover.applyFunctions(mom=genomeMom, dad=genomeDad, count=1):
               (sister, brother) = it
         else:
            sister = random.choice([genomeMom, genomeDad])
            sister = sister.clone()
            sister.mutate(pmut=self.pMutation, ga_engine=self)

         newPop.internalPop.append(sister)

      logging.debug("Evaluating the new created population.")
      newPop.evaluate()

      if self.elitism:
         logging.debug("Doing elitism.")
         if self.getMinimax() == Consts.minimaxType["maximize"]:
            for i in xrange(self.nElitismReplacement):
               #re-evaluate before being sure this is the best
               self.internalPop.bestRaw(i).evaluate()
               if self.internalPop.bestRaw(i).score > newPop.bestRaw(i).score:
                  newPop[len(newPop)-1-i] = self.internalPop.bestRaw(i)
         elif self.getMinimax() == Consts.minimaxType["minimize"]:
            for i in xrange(self.nElitismReplacement):
               #re-evaluate before being sure this is the best
               self.internalPop.bestRaw(i).evaluate()
               if self.internalPop.bestRaw(i).score < newPop.bestRaw(i).score:
                  newPop[len(newPop)-1-i] = self.internalPop.bestRaw(i)

      self.internalPop = newPop
      self.internalPop.sort()

      logging.debug("The generation %d was finished.", self.currentGeneration)

      self.currentGeneration += 1

      return (self.currentGeneration == self.nGenerations)
開發者ID:aguirrea,項目名稱:pyevolve,代碼行數:76,代碼來源:GSimpleGA.py

示例3: your_func

class GSimpleGA:
   """ GA Engine Class - The Genetic Algorithm Core

   Example:
      >>> ga = GSimpleGA.GSimpleGA(genome)
      >>> ga.selector.set(Selectors.GRouletteWheel)
      >>> ga.setGenerations(120)
      >>> ga.terminationCriteria.set(GSimpleGA.ConvergenceCriteria)

   :param genome: the :term:`Sample Genome`
   :param interactiveMode: this flag enables the Interactive Mode, the default is True
   :param seed: the random seed value

   .. note:: if you use the same random seed, all the runs of algorithm will be the same

   """

   selector = None
   """ This is the function slot for the selection method
   if you want to change the default selector, you must do this: ::

      ga_engine.selector.set(Selectors.GRouletteWheel) """

   stepCallback = None
   """ This is the :term:`step callback function` slot,
   if you want to set the function, you must do this: ::

      def your_func(ga_engine):
         # Here you have access to the GA Engine
         return False

      ga_engine.stepCallback.set(your_func)

   now *"your_func"* will be called every generation.
   When this function returns True, the GA Engine will stop the evolution and show
   a warning, if is False, the evolution continues.
   """

   terminationCriteria = None
   """ This is the termination criteria slot, if you want to set one
   termination criteria, you must do this: ::

      ga_engine.terminationCriteria.set(GSimpleGA.ConvergenceCriteria)

   Now, when you run your GA, it will stop when the population converges.

   There are those termination criteria functions: :func:`GSimpleGA.RawScoreCriteria`, :func:`GSimpleGA.ConvergenceCriteria`, :func:`GSimpleGA.RawStatsCriteria`, :func:`GSimpleGA.FitnessStatsCriteria`

   But you can create your own termination function, this function receives
   one parameter which is the GA Engine, follows an example: ::

      def ConvergenceCriteria(ga_engine):
         pop = ga_engine.getPopulation()
         return pop[0] == pop[len(pop)-1]

   When this function returns True, the GA Engine will stop the evolution and show
   a warning, if is False, the evolution continues, this function is called every
   generation.
   """

   def __init__(self, genome, seed=None, interactiveMode=True):
      """ Initializator of GSimpleGA """
      if seed: random.seed(seed)

      if type(interactiveMode) != BooleanType:
         Util.raiseException("Interactive Mode option must be True or False", TypeError)

      if not isinstance(genome, GenomeBase):
         Util.raiseException("The genome must be a GenomeBase subclass", TypeError)

      self.internalPop  = GPopulation(genome)
      self.nGenerations = Consts.CDefGAGenerations
      self.pMutation    = Consts.CDefGAMutationRate
      self.pCrossover   = Consts.CDefGACrossoverRate
      self.nElitismReplacement = Consts.CDefGAElitismReplacement
      self.setPopulationSize(Consts.CDefGAPopulationSize)
      self.minimax      = Consts.minimaxType["maximize"]
      self.elitism      = True

      # Adapters
      self.dbAdapter        = None
      self.migrationAdapter = None

      self.time_init       = None
      self.interactiveMode = interactiveMode
      self.interactiveGen  = -1
      self.GPMode = False

      self.selector            = FunctionSlot("Selector")
      self.stepCallback        = FunctionSlot("Generation Step Callback")
      self.terminationCriteria = FunctionSlot("Termination Criteria")
      self.selector.set(Consts.CDefGASelector)
      self.allSlots            = [ self.selector, self.stepCallback, self.terminationCriteria ]

      self.internalParams = {}

      self.currentGeneration = 0

      # GP Testing
      for classes in Consts.CDefGPGenomes:
#.........這裏部分代碼省略.........
開發者ID:aguirrea,項目名稱:pyevolve,代碼行數:101,代碼來源:GSimpleGA.py

示例4: step

   def step(self):
      """ Just do one step in evolution, one generation """
      genomeMom = None
      genomeDad = None

      newPop = GPopulation(self.internalPop)

      if (MPI.COMM_WORLD.Get_rank() == 0): ### assumes WE are on top of hierarchy!
          popsize = len(self.internalPop)
          numAdded = 0
          maxTries = 1000
          numTries = 0

          crossover_empty = self.select(popID=self.currentGeneration).crossover.isEmpty()

          ###TODO: enforce constraints!###
          while numAdded < popsize:
             genomeMom = self.select(popID=self.currentGeneration)
             genomeDad = self.select(popID=self.currentGeneration)

             if not crossover_empty and self.pCrossover >= 1.0:
                for it in genomeMom.crossover.applyFunctions(mom=genomeMom, dad=genomeDad, count=2):
                   (sister, brother) = it
             else:
                if not crossover_empty and Util.randomFlipCoin(self.pCrossover):
                   for it in genomeMom.crossover.applyFunctions(mom=genomeMom, dad=genomeDad, count=2):
                      (sister, brother) = it
                else:
                   sister = genomeMom.clone()
                   brother = genomeDad.clone()
    #               logging.debug("done cloning")

             sister.mutate(pmut=self.pMutation, ga_engine=self)
             brother.mutate(pmut=self.pMutation, ga_engine=self)

             if (numTries > maxTries or self.owner.eval_constraints(sister)):
                newPop.internalPop.append(sister)
                numAdded += 1
                print "successfully added sister"
             if (numAdded < popsize and (numTries > maxTries or self.owner.eval_constraints(brother))):
                newPop.internalPop.append(brother)
                print "successfully added brother"
                numAdded += 1
             numTries += 1

      #end rank0 onlye
    #      print "rank %d start eval pop" % MPI.COMM_WORLD.Get_rank()

      logging.debug("Evaluating the newly created population.")
      newPop.evaluate()
#      print "rank %d done eval pop" % MPI.COMM_WORLD.Get_rank()
#      if (MPI.COMM_WORLD.Get_rank() == 0):
#         print "after eval, new pop's positions are:"
#         for p in newPop:
#            print p.wt_positions

      if (MPI.COMM_WORLD.Get_rank() == 0): ### assumes WE are on top of hierarchy!
          if self.elitism:
             logging.debug("Doing elitism, %d" % self.nElitismReplacement)
             if self.getMinimax() == Consts.minimaxType["maximize"]:
                for i in xrange(self.nElitismReplacement):
                   #re-evaluate before being sure this is the best
    #               self.internalPop.bestRaw(i).evaluate()
                   if self.internalPop.bestRaw(i).score > newPop.bestRaw(i).score:
                      newPop[len(newPop)-1-i] = self.internalPop.bestRaw(i)
             elif self.getMinimax() == Consts.minimaxType["minimize"]:
                for i in xrange(self.nElitismReplacement):
                   #re-evaluate before being sure this is the best
    #               self.internalPop.bestRaw(i).evaluate()
                   if self.internalPop.bestRaw(i).score < newPop.bestRaw(i).score:
                      newPop[len(newPop)-1-i] = self.internalPop.bestRaw(i)

      self.internalPop = newPop
      if (MPI.COMM_WORLD.Get_rank() == 0): ### assumes WE are on top of hierarchy!
         self.internalPop.sort()
#      if (MPI.COMM_WORLD.Get_rank() == 0):
#         print "after sort, internal pop's positions are:"
#         for p in self.internalPop:
#            print p.wt_positions

      logging.debug("The generation %d was finished.", self.currentGeneration)
      self.currentGeneration += 1

      if (MPI.COMM_WORLD.Get_rank() == 0): ### assumes WE are on top of hierarchy!
         self.saveState ()

      return (self.currentGeneration == self.nGenerations)
開發者ID:kilojoules,項目名稱:Pyevolve,代碼行數:87,代碼來源:GSimpleGA.py

示例5: step

   def step(self):
      """ Just do one step in evolution, one generation """
      genomeMom = None
      genomeDad = None

      newPop = GPopulation(self.internalPop)
      logging.debug("Population was cloned.")
      
      size_iterate = len(self.internalPop)

      # Odd population size
      if size_iterate % 2 != 0: size_iterate -= 1

      #Check on the crossover function by picking a random individual - is it empty?
      crossover_empty = self.select(popID=self.currentGeneration).crossover.isEmpty()
      
      for i in xrange(0, size_iterate, 2):
         #Ok, we select 2 parents using the selector (RouletteWheel, etc.)
         genomeMom = self.select(popID=self.currentGeneration)
         genomeDad = self.select(popID=self.currentGeneration)

         if not crossover_empty and self.pCrossover >= 1.0:
            #Crossover all of them
            for it in genomeMom.crossover.applyFunctions(mom=genomeMom, dad=genomeDad, count=2):
               (sister, brother) = it
         else:
            #Filp a coin each time to determine if you should crossover
            if not crossover_empty and Util.randomFlipCoin(self.pCrossover):
               for it in genomeMom.crossover.applyFunctions(mom=genomeMom, dad=genomeDad, count=2):
                  (sister, brother) = it
            else:
               sister = genomeMom.clone()
               brother = genomeDad.clone()
               #And "pre" mutate them
               sister.premutate(pmut=self.pPreMutation, ga_engine=self)
               brother.premutate(pmut=self.pPreMutation, ga_engine=self)

         #Now each offspring is mutated
         sister.mutate(pmut=self.pMutation, ga_engine=self)
         brother.mutate(pmut=self.pMutation, ga_engine=self)

         newPop.internalPop.append(sister)
         newPop.internalPop.append(brother)

      if len(self.internalPop) % 2 != 0:
         #Odd-numbered population
         genomeMom = self.select(popID=self.currentGeneration)
         genomeDad = self.select(popID=self.currentGeneration)

         if Util.randomFlipCoin(self.pCrossover):
            for it in genomeMom.crossover.applyFunctions(mom=genomeMom, dad=genomeDad, count=1):
               (sister, brother) = it
         else:
            sister = random.choice([genomeMom, genomeDad])
            sister = sister.clone()
            #Do the 2 mutations
            sister.premutate(pmut=self.pPreMutation, ga_engine=self)
            sister.mutate(pmut=self.pMutation, ga_engine=self)

         newPop.internalPop.append(sister)

      #---- Evaluate fitness ------
      logging.debug("Evaluating the new created population.")
      newPop.evaluate()

      #Niching methods- Petrowski's clearing
      self.clear()

      if self.elitism:
         #Avoid too much elitism
         if self.nElitismReplacement >= len(self.internalPop):
             self.nElitismReplacement = len(self.internalPop)-1

         logging.debug("Doing elitism.")
         if self.getMinimax() == Consts.minimaxType["maximize"]:
            #Replace the n-th worst new ones with the nth best old ones
            for i in xrange(self.nElitismReplacement):
               if self.internalPop.bestRaw(i).score > newPop.bestRaw(i).score:
                  newPop[len(newPop)-1-i] = self.internalPop.bestRaw(i)
         elif self.getMinimax() == Consts.minimaxType["minimize"]:
            for i in xrange(self.nElitismReplacement):
               if self.internalPop.bestRaw(i).score < newPop.bestRaw(i).score:
                  newPop[len(newPop)-1-i] = self.internalPop.bestRaw(i)

      self.internalPop = newPop
      self.internalPop.sort()

      logging.debug("The generation %d was finished.", self.currentGeneration)

      self.currentGeneration += 1

      return (self.currentGeneration >= self.nGenerations)
開發者ID:neutrons,項目名稱:CrystalPlan,代碼行數:92,代碼來源:GSimpleGA.py


注:本文中的GPopulation.GPopulation類示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。