本文整理匯總了Python中Device.Device.set_learning_rate方法的典型用法代碼示例。如果您正苦於以下問題:Python Device.set_learning_rate方法的具體用法?Python Device.set_learning_rate怎麽用?Python Device.set_learning_rate使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類Device.Device
的用法示例。
在下文中一共展示了Device.set_learning_rate方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_combi_auto_enc_longer
# 需要導入模塊: from Device import Device [as 別名]
# 或者: from Device.Device import set_learning_rate [as 別名]
def test_combi_auto_enc_longer():
config = Config()
config.update({
"multiprocessing": False,
"blocking": True,
"device": "cpu",
"num_epochs": 1,
"num_inputs": 3,
"num_outputs": {"classes": 2},
"learning_rate": 1.0,
"adadelta": True,
"network": {
"output": {"class": "softmax", "loss": "ce", "target": "classes"},
"auto-enc": {"class": "softmax", "loss": "sse", "dtype": "float32", "target": "data"}
}
})
device = Device("cpu", config=config, blocking=True)
# Set net params.
def get_net_params(with_auto_enc=True):
d = {
"output": {"W_in_data_output": numpy.arange(0.1, 0.7, 0.1, dtype="float32").reshape((3, 2)),
"b_output": numpy.arange(0.0, 2, dtype="float32")}
}
if with_auto_enc:
d["auto-enc"] = {"W_in_data_auto-enc": numpy.arange(0.1, 1.0, 0.1, dtype="float32").reshape((3, 3)),
"b_auto-enc": numpy.arange(0.0, 3, dtype="float32")}
return d
device.trainnet.set_params_by_dict(get_net_params())
device.testnet.set_params_by_dict(get_net_params())
# Show params.
for p in device.trainnet.get_all_params_vars():
print "init %s:" % p
pprint(p.get_value())
# Init dataset.
dataset = DummyDataset(input_dim=config.typed_value("num_inputs"),
output_dim=config.typed_value("num_outputs"),
num_seqs=10)
dataset.init_seq_order()
cost_output_sum = 0.0
for seq_idx in range(dataset.num_seqs):
# Copy to device allocation.
success = assign_dev_data_single_seq(device, dataset, seq_idx)
assert_true(success, "failed to allocate & assign data")
# One train step.
device.set_learning_rate(config.typed_value("learning_rate"))
device.run("train")
output_list, outputs_format = device.result()
assert_is_instance(output_list, list)
assert_true(outputs_format, "for train, we should always get the format")
outputs = Device.make_result_dict(output_list, outputs_format)
print("seq %i" % seq_idx)
pprint(outputs)
assert_in("cost:output", outputs)
assert_in("cost:auto-enc", outputs)
cost_output_sum += outputs["cost:output"]
# Now, drop the auto-enc from the network, and redo the same thing.
del config.typed_value("network")["auto-enc"]
device = Device("cpu", config=config, blocking=True)
device.trainnet.set_params_by_dict(get_net_params(with_auto_enc=False))
device.testnet.set_params_by_dict(get_net_params(with_auto_enc=False))
for p in device.trainnet.get_all_params_vars():
print "second run, init %s:" % p
pprint(p.get_value())
dataset.init_seq_order() # reset
cost2_output_sum = 0.0
for seq_idx in range(dataset.num_seqs):
# Copy to device allocation.
success = assign_dev_data_single_seq(device, dataset, seq_idx)
assert_true(success, "failed to allocate & assign data")
# One train step.
device.set_learning_rate(config.typed_value("learning_rate"))
device.run("train")
output_list, outputs_format = device.result()
assert_is_instance(output_list, list)
assert_true(outputs_format, "for train, we should always get the format")
outputs = Device.make_result_dict(output_list, outputs_format)
print("seq %i" % seq_idx)
pprint(outputs)
assert_in("cost:output", outputs)
assert_not_in("cost:auto-enc", outputs)
cost2_output_sum += outputs["cost:output"]
assert_equal(cost_output_sum, cost2_output_sum)
assert_almost_equal(cost_output_sum, 16.028842568397522, places=6)
示例2: test_multi_target_init
# 需要導入模塊: from Device import Device [as 別名]
# 或者: from Device.Device import set_learning_rate [as 別名]
#.........這裏部分代碼省略.........
# Copy to device allocation.
success = assign_dev_data_single_seq(device, dataset, 0)
assert_true(success, "failed to allocate & assign data")
# Check allocated data.
assert_equal(device.targets["data"].shape, (1, 1, 3)) # input shape. (time,batch,dim)
assert_in("t1", device.targets)
assert_in("t2", device.targets)
assert_equal(device.targets["t1"].shape, (1, 1))
assert_equal(device.targets["t2"].shape, (1, 1))
assert_equal(device.output_index["data"].shape, (1, 1))
numpy.testing.assert_equal(device.output_index["data"], numpy.array([[1]]))
assert_equal(device.output_index["t1"].shape, (1, 1))
numpy.testing.assert_equal(device.output_index["t1"], numpy.array([[1]]))
# Forward test.
device.update_data()
device.testnet.costs["out1"].name = "out1_cost" # nice in the func graph
out_i1 = device.testnet.output["out1"].index
out_i1_nonzero = device.testnet.output["out1"].i
nll1, pcx1 = T.nnet.crossentropy_softmax_1hot(x=device.testnet.output["out1"].y_m[out_i1_nonzero],
y_idx=device.testnet.output["out1"].y_data_flat[out_i1_nonzero])
forward_func = theano.function(
inputs=[device.block_start, device.block_end],
outputs=[
device.testnet.j["t1"], out_i1, out_i1_nonzero[0], nll1, pcx1,
device.testnet.costs["out1"],
device.testnet.output["out1"].p_y_given_x,
device.testnet.costs["out2"],
device.testnet.output["out2"].p_y_given_x],
givens=device.make_givens(device.testnet),
no_default_updates=True,
on_unused_input='warn',
name="forward")
#print "forward func:"
#theano.printing.debugprint(forward_func)
net_j1, out_i1_val, out_i1_nz_val, nll1_val, pcx1_val, t1_cost, t1_y, t2_cost, t2_y = forward_func(0, 1)
print "forward results:"
pprint(net_j1)
pprint(out_i1_val)
pprint(out_i1_nz_val)
pprint(nll1_val)
pprint(pcx1_val)
pprint(t1_cost)
pprint(t1_y)
pprint(t2_cost)
pprint(t2_y)
assert_equal(net_j1, numpy.array([[1]]))
assert_equal(out_i1_val, numpy.array([[1]]))
assert_equal(out_i1_nz_val, numpy.array([0]))
assert_almost_equal(nll1_val, numpy.array([t1_cost]))
numpy.testing.assert_almost_equal(t1_y, pcx1_val)
assert_almost_equal(t1_cost, 1.440189698561195, places=6)
assert_almost_equal(t2_cost, 0.45191439593759336, places=6)
numpy.testing.assert_almost_equal(t1_y, numpy.array([[ 0.0320586 , 0.08714432, 0.23688282, 0.64391426]]), decimal=6)
numpy.testing.assert_almost_equal(t2_y, numpy.array([[ 0.01165623, 0.03168492, 0.08612854, 0.23412166, 0.63640865]]), decimal=6)
# One train step.
device.set_learning_rate(config.typed_value("learning_rate"))
device.run("train")
output_list, outputs_format = device.result()
assert_is_instance(output_list, list)
assert_true(outputs_format, "for train, we should always get the format")
outputs = Device.make_result_dict(output_list, outputs_format)
pprint(outputs)
assert_in("cost:out1", outputs)
assert_greater(outputs["cost:out1"], 0)
assert_almost_equal(outputs["cost:out1"], t1_cost)
# Get net params.
params = device.get_net_train_params(device.trainnet)
references_params = {
"W_in_data_fw0":
numpy.array([[ 1.00055406e+00, 5.54056978e-04, 5.54056978e-04],
[ 1.10811396e-03, 1.00110811e+00, 1.10811396e-03],
[ -1.66217093e-03, -1.66217093e-03, 9.98337829e-01]]),
"b_fw0":
numpy.array([ 0.00554057, 0.00554057, 0.00554057]),
"W_in_fw0_out1":
numpy.array([[-0.00320586, 0.09128557, 0.27631172, 0.23560857],
[ 0.39358828, 0.48257114, 0.75262344, 0.57121715],
[ 0.80961758, 0.9261433 , 0.77106485, 1.29317428]]),
"b_out1":
numpy.array([-0.0320586 , 0.91285568, 2.76311718, 2.35608574]),
"W_in_fw0_out2":
numpy.array([[ -1.16562310e-03, 9.68315079e-02, 1.91387146e-01,
2.76587834e-01, 4.36359135e-01],
[ 4.97668754e-01, 5.93663016e-01, 6.82774291e-01,
7.53175669e-01, 9.72718271e-01],
[ 1.00349687e+00, 1.10950548e+00, 1.22583856e+00,
1.37023650e+00, 1.29092259e+00]]),
"b_out2":
numpy.array([-0.01165623, 0.96831508, 1.91387146, 2.76587834, 4.36359135])
}
assert_equal(len(param_vars), len(params))
for p, v in zip(param_vars, params):
print "%s:" % p
pprint(v)
assert_true(p.name)
numpy.testing.assert_almost_equal(references_params[p.name], v, decimal=6)
示例3: test_combi_auto_enc
# 需要導入模塊: from Device import Device [as 別名]
# 或者: from Device.Device import set_learning_rate [as 別名]
def test_combi_auto_enc():
config = Config()
config.update({
"multiprocessing": False,
"blocking": True,
"device": "cpu",
"num_epochs": 1,
"num_inputs": 3,
"num_outputs": {"classes": 2},
"learning_rate": 1.0,
"network": {
"output": {"class": "softmax", "loss": "ce", "target": "classes"},
"auto-enc": {"class": "softmax", "loss": "sse", "dtype": "float32", "target": "data"}
}
})
device = Device("cpu", config=config, blocking=True)
# Set net params.
def get_net_params(with_auto_enc=True):
d = {
"output": {"W_in_data_output": numpy.arange(0.1, 0.7, 0.1, dtype="float32").reshape((3, 2)),
"b_output": numpy.arange(0.0, 2, dtype="float32")}
}
if with_auto_enc:
d["auto-enc"] = {"W_in_data_auto-enc": numpy.arange(0.1, 1.0, 0.1, dtype="float32").reshape((3, 3)),
"b_auto-enc": numpy.arange(0.0, 3, dtype="float32")}
return d
device.trainnet.set_params_by_dict(get_net_params())
device.testnet.set_params_by_dict(get_net_params())
# Show params.
for p in device.trainnet.get_all_params_vars():
print "init %s:" % p
pprint(p.get_value())
# Init dataset.
dataset = StaticDataset(data=[{
"data": numpy.array([[0.1, 0.2, -0.3]], dtype="float32"),
"classes": numpy.array([1]),
}], output_dim=config.typed_value("num_outputs"))
dataset.init_seq_order()
# Copy to device allocation.
success = assign_dev_data_single_seq(device, dataset, 0)
assert_true(success, "failed to allocate & assign data")
# One train step.
device.set_learning_rate(config.typed_value("learning_rate"))
device.run("train")
output_list, outputs_format = device.result()
assert_is_instance(output_list, list)
assert_true(outputs_format, "for train, we should always get the format")
outputs = Device.make_result_dict(output_list, outputs_format)
pprint(outputs)
assert_in("cost:output", outputs)
assert_in("cost:auto-enc", outputs)
expected_cost_output = 0.3132616877555847
assert_almost_equal(outputs["cost:output"], expected_cost_output, places=6)
exact_cost_output = outputs["cost:output"]
assert_almost_equal(outputs["cost:auto-enc"], 5.263200283050537, places=6)
# Now, drop the auto-enc from the network, and redo the same thing.
del config.typed_value("network")["auto-enc"]
device = Device("cpu", config=config, blocking=True)
device.trainnet.set_params_by_dict(get_net_params(with_auto_enc=False))
device.testnet.set_params_by_dict(get_net_params(with_auto_enc=False))
for p in device.trainnet.get_all_params_vars():
print "second run, init %s:" % p
pprint(p.get_value())
dataset.init_seq_order() # reset. probably not needed
success = assign_dev_data_single_seq(device, dataset, 0)
assert_true(success, "failed to allocate & assign data")
device.set_learning_rate(config.typed_value("learning_rate"))
device.run("train")
output_list, outputs_format = device.result()
assert_is_instance(output_list, list)
assert_true(outputs_format, "for train, we should always get the format")
outputs = Device.make_result_dict(output_list, outputs_format)
pprint(outputs)
assert_in("cost:output", outputs)
assert_not_in("cost:auto-enc", outputs)
assert_almost_equal(outputs["cost:output"], expected_cost_output, places=6)
assert_equal(outputs["cost:output"], exact_cost_output)