當前位置: 首頁>>代碼示例>>Python>>正文


Python DBManager.get_tweets_for_year方法代碼示例

本文整理匯總了Python中DBManager.DBManager.get_tweets_for_year方法的典型用法代碼示例。如果您正苦於以下問題:Python DBManager.get_tweets_for_year方法的具體用法?Python DBManager.get_tweets_for_year怎麽用?Python DBManager.get_tweets_for_year使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在DBManager.DBManager的用法示例。


在下文中一共展示了DBManager.get_tweets_for_year方法的1個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: from DBManager import DBManager [as 別名]
# 或者: from DBManager.DBManager import get_tweets_for_year [as 別名]
class Main:
    """
    Main class, makes necessary function calls to necessary classes
    """

    def __init__(self):
        self.__db_manager = DBManager()
        self.__helper = GeneralHelpers()
        self.__plot_manager = PlotManager()
        self.__import_manager = ImportManager()
        self.__feature_manager = FeatureManager()

        self.years = ("2012", "2013", "2014", "2015")

    def retrieve_tweets(self, file_path_of_ids):
        """
        Runs Import Manager to retrieve and import tweets
        :param file_path_of_ids: String, file path of tweets to import
        :return: void
        """
        self.__import_manager.run(file_path_of_ids)

    def extract_features_and_generate_arff(self, n=3, analyzer='char', year='2012'):
        """
        Makes necessary function calls to extract features for given year and to generate arff file
        :param n: int, ngram count
        :param analyzer: string, word or char
        :param year: string, 2012, 2013, 2014, 2015 or ALL
        :return: string, path of generated arff file
        """

        # Getting tweets with year
        print("Getting tweets for year "+ year)
        tweets_for_given_year = self.__db_manager.get_tweets_for_year(year)

        print("Generating document and classes of tweets.")
        document, classes = self.__feature_manager.create_document_and_classes_for_tweets(tweets_for_given_year, True)

        print("Fitting the data, finding ngrams and frequencies.")
        ngrams, arff_data, vectorizer, X = self.__feature_manager.fit_data(document, classes, n, analyzer)

        print("Formatting the data for arff lib format.")
        formatted_arff_data = self.__feature_manager.format_data_for_arff(ngrams, arff_data)

        print("Generating file.")
        # Experiment name, 1grams, 2grams, 3grams.. or words
        experiment_name = str(n)+'Gram' if analyzer == 'char' else 'Word'

        # File name, TTNet_3grams_2012
        file_name = MODEL_NAME + '_' + experiment_name + '_' + year

        # File name randomized TTNet_3grams_2012_asfas12.arff
        file_name = self.__helper.generate_random_file_name(file_name, ARFF_FILE_EXTENSION)

        # Arff file path ...../DataSet-ARFF/3Gram/TTNet/TTNet_3grams_2012_asfas12.arff
        arff_file_path = PROJECT_ROOT_DIRECTORY + DATASET_ARFF_DIR_NAME + experiment_name + '/' + MODEL_NAME + '/'

        # Generating the file with data
        self.__helper.generate_arff_file(arff_file_path, file_name, formatted_arff_data)

        print("Arff file generated at path:"+arff_file_path+file_name)

    def run_experiment_with_scikit_learn(self, n=1, analyzer='word'):
        """
        Makes necessary method calls to run the experiment on scikit learn.
        :param n: int, count n in n-gram
        :param analyzer: string, either 'word' or 'char'
        :return: void
        """
        # Retrieving all tweets from database
        print("Retrieving all tweets from database.")
        tweets_for_all_years = {}
        # Iterating over all years
        for year in self.years:
            # Retrieving tweets for the year
            tweets_for_year = self.__db_manager.get_tweets_for_year(year)
            tweets_for_all_years[year] = tweets_for_year

        # Creating a big list of tweets
        print("Creating a big list of tweets.")
        all_tweets = []
        # Appending all tweets together
        for year, tweets in tweets_for_all_years.iteritems():
            all_tweets += tweets

        # Generating document
        print("Generating document and classes by preprocessing")
        # Preprocessing and generation of document
        document, classes = self.__feature_manager.create_document_and_classes_for_tweets(all_tweets, True)

        # Getting years' tweets counts
        print("Getting years' tweets counts.")
        years_tweets_counts = {}
        for year in self.years:
            years_tweets_counts[year] = len(tweets_for_all_years[year])

        all_processes = []
        self.all_experiments_results = []

        pool = Pool(cpu_count()-1 or 1)
#.........這裏部分代碼省略.........
開發者ID:datafordevelopment,項目名稱:TimeEffectInSentimentAnalysis,代碼行數:103,代碼來源:Main.py


注:本文中的DBManager.DBManager.get_tweets_for_year方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。