本文整理匯總了Python中CGATReport.ResultBlock.ResultBlocks.extend方法的典型用法代碼示例。如果您正苦於以下問題:Python ResultBlocks.extend方法的具體用法?Python ResultBlocks.extend怎麽用?Python ResultBlocks.extend使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類CGATReport.ResultBlock.ResultBlocks
的用法示例。
在下文中一共展示了ResultBlocks.extend方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: render
# 需要導入模塊: from CGATReport.ResultBlock import ResultBlocks [as 別名]
# 或者: from CGATReport.ResultBlock.ResultBlocks import extend [as 別名]
def render(self, dataframe, path):
if len(dataframe.columns) < 2:
raise ValueError(
"requiring two coordinates, only got %s" %
str(dataframe.columns))
plts, legend = [], []
blocks = ResultBlocks()
for xcolumn, ycolumn in itertools.combinations(dataframe.columns, 2):
# remove missing data points
xvalues, yvalues = Stats.filterMissing(
(dataframe[xcolumn], dataframe[ycolumn]))
# remove columns with all NaN
if len(xvalues) == 0 or len(yvalues) == 0:
continue
# apply log transformation on data not on plot
if self.logscale:
if "x" in self.logscale:
xvalues = R.log10(xvalues)
if "y" in self.logscale:
yvalues = R.log10(yvalues)
self.startPlot()
# wrap, as pandas series can not
# passed through rpy2.
R.smoothScatter(numpy.array(xvalues, dtype=numpy.float),
numpy.array(yvalues, dtype=numpy.float),
xlab=xcolumn,
ylab=ycolumn,
nbin=self.nbins)
blocks.extend(self.endPlot(dataframe, path))
return blocks
示例2: layoutBlocks
# 需要導入模塊: from CGATReport.ResultBlock import ResultBlocks [as 別名]
# 或者: from CGATReport.ResultBlock.ResultBlocks import extend [as 別名]
def layoutBlocks(blocks, layout="column"):
"""layout blocks of rst text.
layout can be one of "column", "row", or "grid".
The layout uses an rst table to arrange elements.
"""
lines = []
if len(blocks) == 0:
return lines
# flatten blocks
bb = ResultBlocks()
for b in blocks:
if b.title:
b.updateTitle(b.title, "prefix")
try:
bb.extend(b)
except TypeError:
bb.append(b)
blocks = bb
# check if postambles are identical across all blocks
postambles = set([b.postamble for b in blocks])
if len(postambles) == 1:
blocks.clearPostamble()
postamble = postambles.pop()
else:
postamble = None
if layout == "column":
for block in blocks:
if block.title:
lines.extend(block.title.split("\n"))
lines.append("")
else:
warn("report_directive.layoutBlocks: missing title")
lines.extend(block.text.split("\n"))
lines.extend(block.postamble.split("\n"))
lines.append("")
if postamble:
lines.extend(postamble.split("\n"))
lines.append("")
return lines
elif layout in ("row", "grid"):
if layout == "row":
ncols = len(blocks)
elif layout == "grid":
ncols = int(math.ceil(math.sqrt(len(blocks))))
elif layout.startswith("column"):
ncols = min(len(blocks), int(layout.split("-")[1]))
# TODO: think about appropriate fix for empty data
if ncols == 0:
ncols = 1
return lines
else:
raise ValueError("unknown layout %s " % layout)
if ncols == 0:
warn("no columns")
return lines
# compute column widths
widths = [x.getWidth() for x in blocks]
text_heights = [x.getTextHeight() for x in blocks]
title_heights = [x.getTitleHeight() for x in blocks]
columnwidths = []
for x in range(ncols):
columnwidths.append(max([widths[y] for y in
range(x, len(blocks), ncols)]))
separator = "+%s+" % "+".join(["-" * x for x in columnwidths])
# add empty blocks
if len(blocks) % ncols:
blocks.extend([ResultBlock("", "")] * (ncols - len(blocks) % ncols))
for nblock in range(0, len(blocks), ncols):
# add text
lines.append(separator)
max_height = max(text_heights[nblock:nblock + ncols])
new_blocks = ResultBlocks()
for xx in range(nblock, min(nblock + ncols, len(blocks))):
txt, col = blocks[xx].text.split("\n"), xx % ncols
txt = blocks[xx].text.split("\n") + \
blocks[xx].postamble.split("\n")
col = xx % ncols
max_width = columnwidths[col]
#.........這裏部分代碼省略.........
示例3: __call__
# 需要導入模塊: from CGATReport.ResultBlock import ResultBlocks [as 別名]
# 或者: from CGATReport.ResultBlock.ResultBlocks import extend [as 別名]
def __call__(self, dataframe, path):
'''iterate over leaves/branches in data structure.
This method will call the:meth:`render` method
'''
result = ResultBlocks()
if not self.split_at:
result.extend(self.render(dataframe, path))
else:
# split dataframe at first index
level = Utils.getGroupLevels(dataframe)
grouper = dataframe.groupby(level=level)
if len(grouper) < self.split_at:
result.extend(self.render(dataframe, path))
else:
# build groups
always, remove_always = [], set()
if self.split_always:
for key, work in grouper:
for pat in self.split_always:
rx = re.compile(pat)
if rx.search(path2str(key)):
always.append((key, work))
remove_always.add(key)
grouper = dataframe.groupby(level=level)
def _group_group(grouper, always, remove_always):
group = always[:]
for key, work in grouper:
if key in remove_always:
continue
group.append((key, work))
if len(group) >= self.split_at:
yield group
group = always[:]
# reconcile index names
yield group
first = True
for group in _group_group(grouper,
always,
remove_always):
# do not plot last dataframe that contains
# only the common tracks to plot
if not first and len(group) == len(always):
continue
first = False
df = pandas.concat(
[x[1] for x in group])
# reconcile index names
df.index.names = dataframe.index.names
result.extend(self.render(df, path))
return result
示例4: __call__
# 需要導入模塊: from CGATReport.ResultBlock import ResultBlocks [as 別名]
# 或者: from CGATReport.ResultBlock.ResultBlocks import extend [as 別名]
def __call__(self, dataframe, path):
'''iterate over leaves/branches in data structure.
This method will call the:meth:`render` method.
Large dataframes are split into multiple, smaller rendered
objects if self.split_at is not zero.
By default, dataframes are split along the hierachical
index. However, if there is only a single index, but multiple
columns, the split is performed on the columns instead. This
is used when splitting coordinate data as a result of the
histogram transformation.
'''
result = ResultBlocks()
if not self.split_at:
result.extend(self.render(dataframe, path))
else:
# split dataframe at first index
level = Utils.getGroupLevels(dataframe)
grouper = dataframe.groupby(level=level)
# split dataframe column wise if only one index
# and multiple columns
if len(grouper) == 1 and len(dataframe.columns) > self.split_at:
columns = list(dataframe.columns)
always = []
if self.split_keep_first_column:
always.append(columns[0])
# columns to always keep
always.extend([c for c in columns if c in self.split_always])
columns = [c for c in columns if c not in always]
for x in range(0, len(columns), self.split_at):
# extract a set of columns
result.extend(self.render(
dataframe.loc[:, always+columns[x:x+self.split_at]],
path))
# split dataframe along index
elif len(grouper) >= self.split_at:
# build groups
always, remove_always = [], set()
if self.split_always:
for key, work in grouper:
for pat in self.split_always:
rx = re.compile(pat)
if rx.search(path2str(key)):
always.append((key, work))
remove_always.add(key)
grouper = dataframe.groupby(level=level)
def _group_group(grouper, always, remove_always):
group = always[:]
for key, work in grouper:
if key in remove_always:
continue
group.append((key, work))
if len(group) >= self.split_at:
yield group
group = always[:]
# reconcile index names
yield group
first = True
for group in _group_group(grouper,
always,
remove_always):
# do not plot last dataframe that contains
# only the common tracks to plot
if not first and len(group) == len(always):
continue
first = False
df = pandas.concat(
[x[1] for x in group])
# reconcile index names
df.index.names = dataframe.index.names
result.extend(self.render(df, path))
else:
# do not split dataframe
result.extend(self.render(dataframe, path))
return result
示例5: __call__
# 需要導入模塊: from CGATReport.ResultBlock import ResultBlocks [as 別名]
# 或者: from CGATReport.ResultBlock.ResultBlocks import extend [as 別名]
def __call__(self, *args, **kwargs):
try:
self.parseArguments(*args, **kwargs)
except:
self.error("%s: exception in parsing" % self)
return ResultBlocks(Utils.buildException("parsing"))
# collect no data if tracker is the empty tracker
# and go straight to rendering
try:
if self.tracker.getTracks() == ["empty"]:
# is instance does not work because of module mapping
# type(Tracker.Empty) == CGATReport.Tracker.Empty
# type(self.tracker) == Tracker.Empty
# if isinstance(self.tracker, Tracker.Empty):
return self.renderer()
except AttributeError:
# for function trackers
pass
self.debug("profile: started: tracker: %s" % (self.tracker))
# collecting data
try:
self.collect()
except Exception as ex:
self.error("%s: exception in collection: %s" % (self, str(ex)))
return ResultBlocks(
Utils.buildException("collection"))
finally:
self.debug("profile: finished: tracker: %s" % (self.tracker))
if self.tree is None or len(self.tree) == 0:
self.info("%s: no data - processing complete" % self.tracker)
return None
data_paths = DataTree.getPaths(self.tree)
self.debug("%s: after collection: %i data_paths: %s" %
(self, len(data_paths), str(data_paths)))
# special Renderers - do not process data further but render
# directly. Note that no transformations will be applied.
if isinstance(self.renderer, Renderer.User):
results = ResultBlocks(title="main")
results.extend(self.renderer(self.tree))
return results
elif isinstance(self.renderer, Renderer.Debug):
results = ResultBlocks(title="main")
results.extend(self.renderer(self.tree))
return results
# merge all data to hierarchical indexed dataframe
self.data = DataTree.as_dataframe(self.tree, self.tracker)
if self.data is None:
self.info("%s: no data after conversion" % self.tracker)
return None
self.debug("dataframe memory usage: total=%i,data=%i,index=%i,col=%i" %
(self.data.values.nbytes +
self.data.index.nbytes +
self.data.columns.nbytes,
self.data.values.nbytes,
self.data.index.nbytes,
self.data.columns.nbytes))
# if tracks are set by tracker, call tracker with dataframe
if self.indexFromTracker:
self.tracker.setIndex(self.data)
# transform data
try:
self.transform()
except:
self.error("%s: exception in transformation" % self)
return ResultBlocks(
Utils.buildException("transformation"))
try:
self.reframe()
except:
self.error("%s: exception in reframing" % self)
return ResultBlocks(Utils.buildException("reframing"))
# data_paths = DataTree.getPaths(self.data)
# self.debug("%s: after transformation: %i data_paths: %s" %
# (self, len(data_paths), str(data_paths)))
# restrict
try:
self.filterPaths(self.restrict_paths, mode="restrict")
except:
self.error("%s: exception in restrict" % self)
return ResultBlocks(
Utils.buildException("restrict"))
# data_paths = DataTree.getPaths(self.data)
# self.debug("%s: after restrict: %i data_paths: %s" %
# (self, len(data_paths), str(data_paths)))
# exclude
#.........這裏部分代碼省略.........
示例6: render
# 需要導入模塊: from CGATReport.ResultBlock import ResultBlocks [as 別名]
# 或者: from CGATReport.ResultBlock.ResultBlocks import extend [as 別名]
def render(self):
'''supply the:class:`Renderer.Renderer` with the data to render.
The data supplied will depend on the ``groupby`` option.
returns a ResultBlocks data structure.
'''
self.debug("%s: rendering data started for %i items" %
(self,
len(self.data)))
# initiate output structure
results = ResultBlocks(title="")
dataframe = self.data
if dataframe is None:
self.warn("%s: no data after conversion" % self)
raise ValueError("no data for renderer")
# special patch: set column names to pruned levels
# if there are no column names
if len(dataframe.columns) == len(self.pruned):
if list(dataframe.columns) == list(range(len(dataframe.columns))):
dataframe.columns = [x[1] for x in self.pruned]
nlevels = Utils.getDataFrameLevels(dataframe)
self.debug("%s: rendering data started. "
"levels=%i, group_level=%s" %
(self, nlevels,
str(self.group_level)))
if self.group_level < 0:
# no grouping for renderers that will accept
# a dataframe with any level of indices and no explicit
# grouping has been asked for.
results.extend(self.renderer(dataframe, path=()))
else:
level = Utils.getGroupLevels(
dataframe,
max_level=self.group_level + 1)
self.debug("%s: grouping by levels: %s" %
(self, str(level)))
for key, work in dataframe.groupby(level=level):
try:
results.extend(self.renderer(work,
path=key))
except:
self.error("%s: exception in rendering" % self)
results.append(Utils.buildException("rendering"))
if len(results) == 0:
self.warn("renderer returned no data.")
raise ValueError("renderer returned no data.")
self.debug("%s: rendering data finished with %i blocks" %
(self.tracker, len(results)))
return results